top of page

An Improved Image Graph for Semi-Automatic Segmentation

D. Freedman

Signal, Image and Video Processing, 2012

The problem of semi-automatic segmentation has attracted much interest over the last few years. The Random Walker algorithm [1] has proven to be quite a popular solution to this problem, as it is able to deal with several components, and models the image using a convenient graph structure. We propose two improvements to the image graph used by the Random Walker method. First, we propose a new way of computing the edge weights. Traditionally, such weights are based on the similarity between two neighbouring pixels, using their grayscale intensities or colours. We substitute a new definition of weights based on the probability distributions of colours. This definition is much more robust than traditional measures, as it allows for textured objects, and objects that are composed of multiple perceptual components. Second, the traditional graph has a vertex set which is the set of pixels, and edges between each pair of neighbouring pixels. We substitute a smaller, irregular graph based on Mean Shift oversegmentation. This new graph is typically several orders of magnitude smaller than the original image graph, which can lead to a major savings in computing time. We show results demonstrating the substantial improvement achieved when using the proposed image graph.

© 2025 by Daniel Freedman / Research Scientist

bottom of page