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Abstract The problem of semi-automatic segmentation has
attracted much interest over the last few years. The Random
Walker algorithm [1] has proven to be quite a popular solu-
tion to this problem, as it is able to deal with several compo-
nents, and models the image using a convenient graph struc-
ture. We propose two improvements to the image graph used
by the Random Walker method. First, we propose a new way
of computing the edge weights. Traditionally, such weights
are based on the similarity between two neighbouring pixels,
using their grayscale intensities or colours. We substitute a
new definition of weights based on the probability distribu-
tions of colours. This definition is much more robust than
traditional measures, as it allows for textured objects, and
objects that are composed of multiple perceptual compo-
nents. Second, the traditional graph has a vertex set which is
the set of pixels, and edges between each pair of neighbour-
ing pixels. We substitute a smaller, irregular graph based on
Mean Shift oversegmentation. This new graph is typically
several orders of magnitude smaller than the original image
graph, which can lead to a major savings in computing time.
We show results demonstrating the substantial improvement
achieved when using the proposed image graph.

Keywords image segmentation - graph - probability
distribution - random walk

1 Introduction

The problem of semi-automatic or interactive segmentation
has attracted quite a bit of interest from the computer vision,
image processing, and computer graphics communities over
the last number of years. The general idea is to segment an
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image into two or more separate regions, each correspond-
ing to a particular object (or the background), with the aid
of some user input. The user input can take on a variety of
forms. A common scenario has the user “scribbling” on each
of the objects of interest, with each scribble corresponding
to a given object, and indicating a small number of pixels
that are contained within that object; see Figure 1. Other
types of user inputs, such as bounding boxes [2] and the
like, are possible as well. In any case, the user input should
be simple enough that a user can provide the input in a few
seconds; for example, a careful delineation of an object’s
boundary is deemed far too effort-intensive. Given this min-
imal user input, the goal is to segment the image into objects,
as shown in Figure 1.

Semi-automatic segmentation is an attractive problem
from two perspectives. First, there are several applications
which rely on this technology. In the arena of image-editing
tools, useful in the graphic arts and elsewhere, extraction of
objects from images is an indispensable tool; and the more
minimal the user input, the faster the graphic artist is able
to complete the required task. In the field of medical imag-
ing, it is often important for a physician to quickly and ac-
curately segment a particular organ or tumour; this allows
for image-guided radiation therapy planning, amongst many
other possibilities.

The second perspective from which semi-automatic seg-
mentation is attractive is the algorithmic perspective. The
problem itself is an interesting and challenging one, as one
is essentially interesting in propagating information from a
small set of known samples — the user input — to the entire
image. Thought of in this way, the problem acquires an in-
teresting mathematical flavour.

Of the several algorithms that have been proposed to
solve the semi-automatic segmentation problem (see Sec-
tion 2 for a review), the Random Walker of Grady et al. [3,1,
4] has several inherent advantages. First, unlike most tech-
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Fig. 1 The semi-automatic segmentation paradigm. (a) The original image. (b) The user marks a small number of pixels for each of the objects
present. Here, the user has used rectangles; the object seeds are marked with a blue rectangle, while the background seeds are marked with a green
rectangle. (c) The resulting segmentation, using the method proposed in this paper. (d) Another visualization of the segmentation.

niques which divide the image into precisely two regions
— an object and the background, the Random Walker tech-
nique is able to segment the image into an arbitrary number
of objects. This is useful in many applications; for instance,
in medical imaging, there are often several structures of in-
terest in a given scan. (A more concrete example is the fol-
lowing: in the treatment of prostate cancer, we may be inter-
ested in four objects — the prostate, the bladder, the anterior
rectal wall, and the “background,” i.e. the remainder of the
image.) A second nice property of the Random Walker al-
gorithm is the modeling of the image as a graph structure.
Such a structure is a handy way to encode the propagation
of information described above, and it is here that we make
our contribution.

In particular, we make two contributions. The first con-
tribution pertains to the weight on the edges in the graph.
Traditionally, such weights are based on the similarity be-
tween two neighbouring pixels, based on their grayscale in-
tensities or their colours. We substitute a new measure of
weights based on probability distributions over colours. This
measure is much more robust than simple colour-based mea-
sures, as it allows for textured objects, and object that are
themselves composed of more than a single perceptual com-
ponent. These new weights are very effective in practice, and
we will show multiple examples in which the use of the new
weights leads to a substantial improvement in segmentation
performance.

The second contribution concerns the graph structure it-
self. The traditional graph has a vertex set which is the set
of pixels, and edges between each pair of neighbouring pix-
els. Instead of using pixels, we first oversegment the image
using the Mean Shift algorithm [5-7]. We then use the re-
sulting irregular graph, with vertices corresponding to the
segments and edges corresponding to pairs of adjacent seg-
ments. This new graph is considerably smaller than the orig-
inal image graph; on an image of one million pixels, it is not
uncommon to find a thousand such segments. As the Ran-
dom Walker algorithm much solve a (sparse) linear system
which is of order the number of vertices, this can lead to
a major savings in computing time. Furthermore, the Mean
Shift algorithm is quite effective at oversegmentation, lead-

ing to an extra degree of robustness with respect to image
noise. Indeed, one might argue that the use of this Mean
Shift based graph enhances the segmentation to the extent
that, in terms of the experimental results, the two contribu-
tions are fundamentally intertwined.

1.1 Paper Outline

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the state of related work within the field
of semi-automatic segmentation. We then turn, in Section 3,
to the algorithm itself. We spend the majority of the space
focused on the new definition of edge weights, and issues
relating to the computation of these weights in practice. In
Section 4, we show results which qualitatively demonstrate
the improvements in speed and accuracy that arise from the
two contributions. We also run a quantitative comparison
with five state of the art algorithms on the Grabcut Database
[2], and show that our method outperforms these algorithms.
We conclude in Section 5.

2 Related Work

Semi-automatic segmentation, which is also referred to as
interactive or seeded segmentation, has been a subject of
interest to the computer vision and image processing com-
munities for the last two decades. The Intelligent Scissors
and Livewire work of Mortensen and Barrett [8—10] were
amongst the earliest methods to tackle the problem. They
used a contour-based method, in which a curve drawn by
the user would automatically “snap” to nearby image edges.
The Image Snapping method of Gleicher [11] is in a similar
vein.

The idea of performing interactive segmentation using
Graph Cuts was introduced by Boykov and Jolly [12,13],
though it was anticipated in earlier work by Greig et al. [14].
The user marks a small number of background and fore-
ground pixels as “seeds;” the goal is then to propagate the
information contained in these seeds to the rest of the im-
age. A binary energy function is formulated, in which each



pixel can have a label of either O (background) or 1 (fore-
ground); the energy tries to respect images edges. That is,
adjacent pixels on opposite sides of a high contrast edge are
not penalized for having opposite labels; whereas adjacent
pixels in a smooth region are. A global minimum of the en-
ergy can be found by combinatorial means, in particular, by
solving a max-flow/min-cut problem.

There have been a number of extensions of the Graph
Cuts methodology for semi-automatic segmentation. Li et
al. [15] presented a method combining watershed segmen-
tation and Graph Cut minimization to build an interactive
image cut-out system. Lombaert et al. [16] improved the
performance of the Graph Cut technique with a multilevel
banded heuristic for computation of Graph Cuts that is mo-
tivated by the well-known narrow band algorithm in level set
computation. The “GrabCut” technique of Rother et al. [2]
introduced better colour modeling, as well as an extra layer
of (local) minimization to the Graph Cuts technique, with
good results. Freedman and Zhang [17] incorporated shape
priors within the Graph Cuts framework. A number of pa-
pers [18-20] attempted to merge the Active Contour and
Graph Cuts paradigms.

The Random Walker technique of Grady and collabora-
tors, which we make use of in this paper, is the other major
technique for propagating information from seed pixels to
the rest of the image. This work, which initially appeared in
[3,1], computes the probability that a random walk process
from a given pixel ends up at any of the seed pixels. The
transition probabilities between pixels vary inversely with
the contrast between pixels, so that the walks tend not to
cross edges. An advantage of this technique over the graph
cuts formalism is that it can naturally handle more than two
objects, which is not the case with Graph Cuts.

Extensions to the Random Walker technique include the
incorporation of priors [4], a faster technique which pre-
computes eigenvectors [21], and an extension to the case
of random walks on directed graphs [22]. In addition, in-
teresting connections [23,24] have been noted between the
Graph Cuts technique, the Random Walker method, algo-
rithms based on shortest paths [25], and watersheds [26].
There is also related work in the area of learning-style trans-
duction [27].

3 The Algorithm

In this section, we describe the algorithmic contributions of
the paper. We begin, in Section 3.1, with a more in-depth
overview of the Random Walker technique of Grady et al. [3,
1]. Given this framework, we then describe in Section 3.2
the principal contribution of the paper: the probability dis-
tribution based weights. We pay particular attention to im-
plementation related issues, as well as issues related to the
setting of parameters. In Section 3.3, we describe how to

use Mean Shift as a preprocessing step to enable an overseg-
mentation, leading to a considerably smaller irregular graph
which can be used for the Random Walker.

3.1 The Framework

For the semi-automatic segmentation algorithm, we will as-
sume a particular type of user input, often referred to as
scribbles or seeds. As shown in Figure 1, the user marks
a few pixels in each object of interest; in Figure 1, the marks
are in the form of small rectangles, though any simple form
of marking may be used. It is assumed that the user has
not made any mistakes — that is, the seeds are indeed pixels
drawn from the various objects. Given the seeds, the goal of
the semi-automatic segmentation scheme is to take the lim-
ited information provided by the user, and to propagate it to
the rest of the image, so that all pixels can then be labeled as
belonging to a specific object.

We will focus on the Random Walker technique of Grady
etal. [3,1]. An undirected graph G = (V, E) is formed, where
the vertex set V equals the set of pixels in the image. Note
that the vertex set can be partitioned into a set of “marked
vertices”, V,,,, which are those pixels that the user has marked
as belonging to the various objects, i.e. the seeds; and V,
the “unmarked vertices,” comprising the remaining set of
vertices. The edge set E consists of pairs of pixels which
are neighbours in the image, using either a standard or 4-
or 8-neigbourhood. The graph is weighted; the weight of an
edge e = (v;,v;), which we denote either w(e) or w(v;,v;),
is taken to depend on the difference between the grayscale
intensities or colours of the two pixels. Thatis, letd(v;,v;) =
llz(vi) —z(v;)||, where z is either grayscale intensity (a scalar)
or colour (a 3-dimensional vector); then the weight is given
by an expression like

1

—d(vj, )?/c? =
w(vivy) = e O or w(vivy) = e e

where o is a parameter to be set. Thus, the weights lie in the
range [0, 1]; for similar pixels, we will have a weight close
to 1, whereas for very different pixels we will have a weight
close to 0.

Given this graph structure, the idea behind the Random
Walker algorithm is as follows. Suppose that there are K
possible objects (including the background) within the im-
age, and that each one of the marked vertices in V,, belongs
to one of these K objects. Now, focus on a particular edge e
whose endpoints are the vertices v; and vj, i.e. e = (vi,v;).
We imagine a random walk over the graph G: since the edge
weight w(e) lies in the range [0, 1], the weight may be inter-
preted as a transition probability from vertex v; to vertex v;.
Given the above definition of the edge weights, we can see
that a random walk is likely to transition from v; to v; if v; is



very similar to v; (in colour or intensity), and is unlikely to
make the transition if the two vertices are dissimilar.

Now, let us consider a specific random walk on the graph,
given these transition probabilities. In particular, for each
unmarked vertex v; € V,,, we compute the probability that
a random walk beginning at that vertex reaches any one of
the marked vertices from a particular object k; we denote
this quantity by pf.‘ . We then segment the image according
to these probabilities. More specifically, for any vertex v;,
we classify it as belonging to segment k if pi.‘ > pfl for all
k' # k. Note that edges in the image (as opposed to edges in
the graph) correspond to low transition probabilities, as they
involve a rapid change in colour or intensity. Thus, this al-
gorithm will tend to respect image edges in performing the
segmentation.

It turns out that the probabilities pf-‘ may be computed
through the solution of a large, sparse linear system. In par-
ticular, let the degree of a vertex v; be &; = Y. jcqq (i) W(Vi, v)),
and let the Laplacian matrix be defined in the usual way:

O; ifi=j

Lij= ¢ —w(v;,v;) ifiand j are adjacent

0 otherwise

Further, let the vertices be sorted so that the marked ver-
tices are on top, followed by the unmarked vertices; the cor-
responding block-decomposition of the Laplacian may be
written

L= L{,"ﬁ ﬂ (1

That is, L, is the |V,| x |V,,| submatrix of L consisting of
the first |V,,| rows and first |V,,| columns; B is the |V,| X
|V.| submatrix of L consisting of the first |V}, | rows and the
final |V,| columns; and L, is the |V,| x |V,| submatrix of L
consisting of the final |V,,| rows and final |V,,| columns.

Finally, let f* be a |V,,| x 1 vector, such that fik =1if
vertex v; has been marked as belonging to k”* object, and 0
otherwise. Then if pf is the |V,| x 1 vector containing the
variables pf‘ , it can be computed as the solution to the linear
system

L.,p* =-Bf* 2)

We are therefore required to solve K such linear systems. (In
fact, K — 1 will do; see [1].) The interested reader is referred
to [1] for further details.

3.2 Probability Distribution-Based Weights

For the Random Walker scheme to be successful, it is im-
portant that the graph structure itself conveys the proper no-
tions of homogeneity of a region. As noted above, traditional

weights depend on the difference in grayscale intensity or
colour of an object; that is, they vary inversely with the dis-
tance

d(vi,vj) = llz(vi) = z(v))ll

where z is either intensity or colour. If one possesses no prior
information about the objects of interest, this is perhaps the
best one can do. However, we do possess prior information:
the user input in the form of seeds gives us some important
information about the profiles of the various objects. It is
this extra information that we wish to exploit in formulating
more meaningful edge weights.

@ by ' ©

Fig. 2 The need for probability distribution-based weights; see discus-
sion in the text. (a) Synthetic texture. (b) Coral snake. (c) Elephant with
heterogeneous background.

To illustrate the problem, examine the three images in
Figure 2. The left image shows a combination of two syn-
thetic textures; the middle image, a coral snake which is it-
self composed of three separate colours; and the right im-
age an elephant, with a heterogeneous background. In each
case, traditional edges weights, based on grayscale inten-
sity or colour differences, will lead to small edge weights,
and thus low transition probabilities, within perceptual seg-
ments. In the case of the synthetic textures, we can expect
the small weights to appear along the boundary between the
light brown veins and the dark brown blobs in the top half of
the image. In the case of the coral snake, such weights would
appear between the red, black, and yellow segments. In the
case of the elephant, small weights would manifest them-
selves along the divisions between sky, mountains, bushes,
and grass. In all three cases, the result will likely be a seg-
mentation not according to the objects (or backgrounds) that
we have in mind, but rather accordingly to grayscale of colour
homogeneity. It is this problem that we seek to fix.

3.2.1 The Weights

As has already been noted, we have prior information on the
objects of interest in the form of the user input. Focus on
the image of the coral snake, and suppose that the user input
is the seed (in this case, a rectangle) as shown in Figure 1.



This input gives us all the information we need to model
the object, in the form of a probability density. In particular,
denote the 3-vector for colour by z; each object k that we
wish to segment has seeds, and from these seeds we can
learn a probability density for that object, which we denote

In Section 3.2.2, we will describe the process by which the
density p*(-) is learned from the seeds for object k. For the
moment, however, let us take the densities as given, and let
us define edge weights using these densities.!

If two adjacent vertices belong to the same object, then
we do not necessarily expect that their colours will match
— as we have already seen from the images in Figure 2.
By contrast, however, we would expect that the probabil-
ity density evaluated at their colours should match, at least
approximately. More specifically, if v is a vertex, and z(v) is
its colour, then p(z(v)) is the probability density evaluated
at its colour. Now, if the two vertices v; and v; both belong
to object k, we would expect that the scalars p¥(z(v;)) and
p¥(z(v;)) should both be relatively large, as the colours z(v;)
and z(v;) are both parts of the object k, and hence should be
represented in that object’s probability density p*(-). Thus,
even though z(v;) and z(v;) may be quite different, p*(z(v;))
and p*(z(v;)) will be quite similar. Similarly, if neither ver-
tex belongs to object k, we would expect that p*(z(v;)) and
p¥(z(v;)) should both be relatively small; again, p*(z(v;))
and p*(z(v;)) should roughly match. On the other hand, if
vertex v; belongs to object k and vertex v; does not, then
p¥(z(v;)) will be large and p¥(z(v;)) will be small, so that
p¥(z(v:)) and p*(z(v;)) will not match, as desired. Thus, a
first version of the distance between vertices might be

d(vi,vj) = p*(z(vi) = P*(z(v;))]
with the weights correspondingly given by

1
Ky v:) =
w (Vzavj) 1+dk(Vi,Vj)/G

Note that according to the above expressions, the weight
for a given edge is different for each object k. Thus, we must
form k separate Laplacians, L¥, satisfying

5k ifi=j
L{»‘j = ¢ —w¥(v;,v;) ifiand j are adjacent 3)
0 otherwise

! The assumption that the learned density matches the true density
of the object will depend, of course, on the choice the user has made
for the seeds. In fact, it is not critical for the learned density to exactly
match the true density, but rather for the supports of the two densities
to roughly correspond. This will become clearer in our discussion of
the conditional probabilities 77:1-" , later in this section.

where as before, the degree of a vertex is
8k = Z wh(vi,v;).

Jj€adj(i)
As in the case of the ordinary Random Walker (i.e. with
colour- or intensity-based weights), we must solve the Ran-
dom Walker equation k separate times, one linear system for
each object:

Lyt =—B'f* @)

u

where LX and B¥ are drawn from the block decomposition of
Lk according to Equation (1). What distinguishes (4) from
the ordinary Random Walker in (2) is that in (4) the Lapla-
cian Ly, and hence its submatrices L’; and B, is different
for each of the & linear systems that must be solved; in (2),
a single Laplacian L is used for all £ linear systems, and
what varies is simply the vector fX. Finally, as in the ordi-
nary Random Walker, to achieve segmentation we classify a
vertex v; as belonging to segment k if pf > pf’ for all K’ # k.

Note that this technique effectively eliminates our prob-
lem. The homogeneity of a region is now defined in terms of
a probability density, rather than colours or grayscale inten-
sities. As a result, an object which is either textured or has
multiple components (as in Figure 2), will be much more ho-
mogeneous from the point of view of the learned probability
density. For example, we would expect that for the case of
the coral snake, the value of the probability density will not
change very much as we move from the red to the yellow
regions, at least as compared to the change in the colours
themselves. As a result, we will not have the same problem
of very low edge weights along the boundary between red
and yellow regions.

In fact, we can do even better. Rather than use the densi-
ties, consider the following quantity:

nl.k = prob(v; € obji|z(vi) = z2),

that is, the conditional probability that vertex i is part of the
k' object given that we know its colour is z. Based on this
quantity, we may compute the distance and the weights as

d* (vi,vj) = |mf — 7} (5)
and

k 1
w (Vivvj) = (6)

1+d*(vi,vj) /o
Why move from densities to conditional probabilities?

There are two advantages to working with the quantity n{‘
rather than the density-based quantity p¥(z(v;)):

1. Probabilities are bounded between O and 1, which is not
the case with densities. As a result, it is easier to set the
parameter ¢ in Equation (6). In fact, we simply take a
value of o = 0.1 in all of our experiments. (Since densi-
ties can take on very large values, the setting of ¢ could
become a bit tricky if densities were used.)



2. Within a given object, probabilities tend to be even smoo-
ther than densities. To see why, imagine an example in
which the first object is a mixture of green and red, in
proportions of 70 % and 30 %, respectively; whereas the
second object is blue. Then within the first object, the
density will be larger for green than for red, leading to
variations in the value of p¥(z(v;)) as we transition from
green to red pixels, and hence to edge weights (on edges
spanning green and red pixels) which are not close to 1.
By contrast, it is easy to see that there will be no varia-
tion in the value of 7} as we transition from green to red
pixels, and hence that the corresponding edge weights
will all be 1, as desired.

There still remains the issue of computing 7rl-k given our
knowledge of the densities p¥(z(v;)). This is easily accom-
plished using Bayes’ Rule:

k= prob(v; € obji|z(vi) = 2)
_ prob(z(v;) = z|vi € obji) prob(v; € ob ji)
Y, prob(z(vi) = z|vi € ob ji1) prob(v; € objy)
e
Li—1P¥ (z(v1))

where in the last line, we have assumed prob(v; € obji) =
1/K for all K'. This is a reasonable assumption in the absence
of other information.

The overall segmentation scheme is then described in
Figure 3.

)

Segmentation Scheme

Learn Densities: Learn probability densities p*(z) for each ob-
ject k from the seeds for that object, using the procedure
described in Section 3.2.2.

Conditional Probabilities: Compute conditional probabilities
71'11‘ for each vertex v; and each object &, according to Equa-
tion (7).

Edge Weights: Compute edge weights according to Equations
(5) and (6).

Laplacians: Compute the k Laplacian matrices and their block
decompositions according to Equations (3) and (1).

Random Walker Probabilities: Compute the random walker
probabilities by solving the sparse linear system (4).

Segmentation: For any vertex v;, classify it as belonging to
segment k if p¥ > pf’ for all K’ # k.

Fig. 3 Segmentation scheme with the new edge weights.

Finally, note that it is possible to use the conditional
probabilities 77:{‘ as prior probabilities. That is, if 7rik is large,
we might like to bias the segmentation towards choosing
vertex i as part of segment k. If desired, such priors can be
incorporated in a straightforward fashion into the Random
Walker framework, see [4].

3.2.2 Learning the Densities from Seeds

We may now turn to the issue of learning the densities p*(z)
from the user inputs, which in turn can be used to compute
the conditional probabilities 7rlk . In effect, for each object k
we are given a set of samples {zX}/*, which are the colour
vectors of the seed pixels for object k. Based on this set of
colour vectors, we wish to compute a density estimate p*(z).

The problem of nonparametric density estimation has
been extensively treated in the literature, see for example
[28]. In general, there are two common approaches: his-
tograms, and kernel density estimates (KDEs). Histograms
have the advantage of being a compact representation; that
is, they have low space complexity. Their main disadvantage
is that they are not smooth. KDEs are the opposite case: they
are smooth, and as a result, have better asymptotic conver-
gence properties than histograms, but their space complexity
is not good. In particular, KDEs require O(n) space, where
n is the number of samples used to generate the estimate.
A histogram’s space complexity is, instead, the number of
non-zero bins, which does not depend directly on 7.

Instead of using either histograms or KDEs, we use a
combined representation which has the best of both worlds:
a small space complexity as well as smoothness. Such rep-
resentations have certainly been proposed before, as for ex-
ample in [29]; nonetheless, we present our own version here,
as it is particularly simple to implement. Note that we work
in the CIE 1976 (L*,u*,v*) colour space [30], which we re-
fer to informally as Luv. We could in principle work in any
colour space, but as is well known, Luv is a more perceptu-
ally meaningful colour space than is RGB.

The scheme is straightforward: the essence involves com-
puting a histogram of the data, and then interpolating be-
tween bins to gain smoothness. More specifically, suppose
that the bins are denoted by index b; the probability of each
bin, as given by the histogram, is &; the midpoint of each
bin is my; and an arbitrary colour vector z falls in bin b(z).
Furthermore, since the bin structure is a hyperrectangle, then
each bin may be written as b = (i1, i2,13), i.e. one coordinate
for each dimension of the colour vector.

Now, suppose that we are dealing with a vector z which
falls into bin b(z); to compute the density p(z), we will in-
terpolate the neighbouring bin probabilities &, where the
neighbours b’ are those which satisfy ||’ —b(z)]|. < 1. Since
the colour vector is three-dimensional, this is a neighbour-
hood with 27 elements, including the bin b(z) itself. Write
b(z) = (i5,15,15); we then write the interpolation as

1 1
p(z) = 2

Z Z a’i|~iz7i3(V(Z))§i~1+i1,ig+i2,i§+i3
“lis=—1

2,

ij=—lip

al—



In the above expression, r(z) is a relative coordinate within
bin b(z), given by

_ammyg
o S

r(z)

where s is the width of the bin; and @, ;,,(r(z)) is the
weight given to the neighbour whose index is (&5 + i1, +
i, ig + i3).

We require that the weights @ sum to 1

1 1
Z Z W, iy ,is (I") =1 Vr
=—liz=—1

lip=—1i3=—

\‘\ M_

i

and C is a normalizing constant to be defined shortly. To
satisfy the constraint of summing to 1, while also ensuring
that the density estimate is sufficiently smooth, i.e. p(:) €
C?, we define

3
@iy iy i3 (r) = [T @, (r))
=1

where the components of the vector r are rj, i.e. r = (r1,r2,73),
and

01(y) = max{ 311~ (14270
01 (7) = max{;[l —a —zm,o}

ao(y) =1—(0_1(y) +@1(y)

where 7 is a scalar argument. We illustrate the interpolation
weights for a two-dimensional setting, i.e. j, ;,(r) for r =
(r1,r2), in Figure 4.

The constant C should be chosen so that p integrates
to 1, so that it is a true probability density. However, since
p is only used to compute the conditional probabilities 77:{‘,
computing C is unnecessary since it will just drop out of

Equation (7) in any case.

3.3 Improved Speed Using Mean Shift

Note that in order to use the Random Walker algorithm, we
are required to solve the linear system given in Equation (4)
K times, where K is the number of objects to be segmented.
This linear system is O(n) in size, where n is the number
of pixels. Standard methods for solving linear systems have
complexity O(n3). Due to the sparse nature of the system,
this can be accelerated considerably, but the final complexity
will still depend on n. In order to speed up the algorithm,
therefore, it would be useful if we could somehow shrink
the size of the relevant linear system. We can achieve such
a shrinkage by using the Mean Shift algorithm [6,7] as a
preprocessing step, to gain an initial oversegmentation.

. ~l

(i],iz):(—l,—l) (i],iz):(o,—l) (i],iz):(-‘y-l,—l)

(i1,i2) = (=1,0) (i1,i2) = (0,0) (i1,i2) = (+1,0)
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Fig. 4 The interpolation weights illustrated in a two-dimensional set-
ting, i.e. @ ;,(r). In each case, the domain of the weights is r €
[~0.5,0.5]%.

We briefly review the Mean Shift algorithm. The pix-
els are taken to be samples of a probability distribution over
colour space, and an estimate of the probability density is
formed by using a Kernel Density Estimate (KDE). This
non-parametric estimate essentially places a small bump (the
kernel) at each point, and then sums up these bumps; the
kernel can be taken to be a Gaussian, although kernels with
compact support also exist. Given a KDE, the Mean Shift al-
gorithm is essentially a hill-climbing algorithm; that is, start-
ing at any point z in colour space, the Mean Shift algorithm
is an efficient iterative scheme which brings z up the hill of
the KDE, finally stopping at the local maximum, or mode,
of the KDE in whose basin of attraction z lies. Full details
of the algorithm may be found in [5-7].

It is now a simple matter to construct a smaller graph
using the Mean Shift algorithm for preprocessing. The new
graph, G' = (V' E’), has as vertices each of the segments
computed with by Mean Shift. The edge set E’ consists of
pairs of segments which are adjacent in the plane. This graph
is often called a Region Adjacency Graph, see Figure 5 for
an illustration. This graph is irregular; fortunately, however,
it still possesses the key property we require, namely that it
is sparse. The fact that it is sparse follows directly from the
properties of planar graphs: a planar graph with n vertices
can have at most 3n — 6 edges [31]. This fact itself follows
directly from the fact that the Euler Characteristic of a pla-
nar graph is 2, and that the Euler Characteristic for a two-
dimensional simplicial complex is just ¥ = |V|— |E| + |F]|,



where |F| is the number of faces, or triangles of the complex
[32]. A little bit of algebra gives the result.

To return to the main thread of the argument, note that
the irregularity of the Region Adjacency Graph does not af-
fect the Random Walker algorithm, which does not assume
a regular structure on the graph. In practice, by using this
technique, the vertex set may be reduced from a set of 10°
elements to one of 10° elements, leading to a huge savings
in computation time. In particular, the main step in the Ran-
dom Walker algorithm — the solution of a sparse linear sys-
tem — has complexity which is practically linear in the num-
ber of vertices; we would therefore expect a speed-up fac-
tor of roughly the factor decrease in the size of the vertex
set. Of course, this speed-up calculation is not entirely cor-
rect: it does not take into account the time to compute the
Mean Shift segmentation. Nevertheless, the Mean Shift pre-
processing should not be too onerous from the speed point
of view, as there are a number of fast versions of Mean Shift
[33-35], which have low complexities, both in theory and in
practice.

We note that one may also run other oversegmentation
algorithms in place of Mean Shift, such as watersheds [26]
or the graph-based algorithm of Felzenszwalb and Hutten-
locher [36]. Indeed, Li ef al. [15] and Marcotegui et al. [37]
both use watershed segmentation as the finest level of detail
of their semi-automatic segmentation schemes.

It is also important to note the downside of using the
Region Adjacency Graph based on Mean Shift. In partic-
ular, the Mean Shift segmentation is itself based on con-
structing a KDE in colour space. As a result, depending on
the value chosen for the colour bandwidth (the parameter in
Mean Shift which controls the width of each bump in the
KDE), weak boundaries of the image may potentially be de-
stroyed by Mean Shift. This effect is certainly noticeable in
some experimental results; nonetheless, we have found that
by and large it does not lead to significant issues. We now
present both qualitative and quantitative experimental eval-
uations of the algorithm, which show that the despite this
issue, the overall algorithm — consisting of both the prob-
ability distribution-based weights and the reduced graph —
performs well.

4 Results
4.1 Qualitative Experimental Evaluation

In this section, we present a qualitative experimental eval-
uation of our algorithm. We have run the algorithm on 10
example images; in each case, we compare the results of the
proposed algorithm with those that result from using colour-
based weights. All images are shown in Figure 6. Column
(a) shows the original image; column (b) shows the user in-
put; columns (c) and (d) show the results of using colour-

Fig. 5 The Region Adjacency Graph derived from the Mean Shift
oversegmentation. The boundaries of the Mean Shift segments are de-
noted with dashed curves. The resulting graph is shown with vertices
in green and edges in red.

based weights, both in terms of the original image and a pure
segmentation map (the latter aids with visualization); and
columns (e) and (f) show the results using the probability-
based weights, in a similar format.

Before describing the results, a few points should be
noted about the experiment. The user input was in the form
of rectangles, where the user selected one rectangle per ob-
ject (foreground and background). Of course, other scribble-
type inputs are possible, but rectangles were used for their
simplicity.? In all cases, the Luv colour space was used. The
o parameter for the colour-based algorithm was set to 100;
for the probability-based algorithm, it was set to 0.1. Both
values have been chosen to produce the best results attain-
able, based on a visual inspection of the results on the 10 im-
ages. The number of bins for the probability-based method
is taken to be 5 in each dimension (L, u, and v).

Let us now turn to analysis of the results, as shown in
Figure 6. The top two rows are synthetic texture images,
designed simply as a first test of the method. Note that the
probability-based technique produces almost perfect results,
splitting the two textures in half; the colour-based method,
by contrast, makes mistakes, particularly in the second ex-
ample, where a good chunk of the righthand texture is in-
cluded in the lefthand segment. This is very logical, as the
textures themselves possess strong colour gradients, so that
a purely colour-based technique is bound to fail.

The third and fourth rows show examples in which the
foreground — the coral snake and the parrot — are them-
selves made up of multiple colours and textures. In these
cases, the probability-based method does very well, while
the colour-based method fails almost completely. Note that

2 In each of the example images shown, one seed rectangle was used
per object; however, in general there is nothing to prevent the user from
choosing multiple seed rectangles for a given object. This may be par-
ticularly useful if the object is composed of multiple components, or
has holes. There is no change to the underlying algorithm in this case,
and indeed the implementation we use will, without modification, ac-
cept multiple rectangles per object.
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Fig. 6 (a) The original image. (b) The user input. (c) The segmentation with colour-based weights. (d) The segmentation map with colour-based
weights. (e) The segmentation with probability-based weights. (f) The segmentation map with probability-based weights.

in both cases, the probability-based method does make small The examples in rows 5, 6, and 7 demonstrate situations
mistakes, although the mistakes in these cases could proba-  in which the background is composed of multiple colours
bly be corrected with simple post-processing, such as amor-  and textures. The background in row 5 has, in some sense, a

phological filter. single texture (though multiple colours); whereas the back-
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weights.

grounds in rows 6 and 7 show multiple textures and colours.
The probability-based segmentations in these cases show a
few more artifact than those in the previous rows. In partic-
ular, the segmentation of the elephant is not perfect, which
can be explained by the more complex background and fore-
ground. The examples in rows 8, 9, and 10 continue with
textured foregrounds and backgrounds, and the results are
quite similar to those of the prior three rows. In all cases,
the segmentations are quite good compared to the results of
the colour-based scheme, which are not very informative. In
particular, the colour-based scheme predictably has trouble
with the textured regions, as these regions contain a lot of
variation in colour, even between neighbouring vertices. As
a result, the edges between neighbouring vertices within a
given segment — for example, the rocky background in row
5 or the grass in row 8 — may have very small weights, con-
trary to what is necessary for a good segmentation.

Finally, it is worth noting the speed-up that we get from
using the Mean Shift preprocessing to derive a much smaller,
irregular graph, see Table 1. For each image, we note the size
of the image in pixels, which is the number of vertices in the
ordinary Random Walker graph (second column); and the
number of segments in the Region Adjacency Graph that our
algorithm uses (third column). As the solution of a sparse
linear system practically has complexity which is linear in
the number of vertices, the expected theoretical speed-up is
the ratio of the sizes of the two graphs, which is reported
in the fourth column. As has already been noted in Section
3.3, this theoretical speed-up is not the actual speed-up, due
to the fact that we have ignored the time for the Mean Shift
preprocessing step.

For a flavour of actual running times, including the Mean
Shift preprocessing step, see Table 2. We have compared our
algorithm with the implementation of the standard Random
Walker which may be found on Grady’s website [38]. Both
methods were run on the same machine, an Intel Core 2 Duo

© @

Fig. 7 (a) The original image. (b) The user input. (c) The segmentation with colour-based weights. (d) The segmentation with probability-based

Image # Pixels | # Segments | Ratio
Texture 1 45,300 269 168.4
Texture 2 44,400 207 214.5
Coral Snake 150,528 2,779 54.2

Parrot 202,400 1,378 146.9
Shadows 28,470 606 47.0
Elephant 292,200 2,110 138.5
Rhinoceros 120,000 742 161.7
Dog 252,600 2,961 85.3

Chameleon 115,600 794 145.6
Garter Snake 172,800 1962 88.1

Table 1 Decrease in the graph size through the use of Mean Shift pre-
processing.

CPU, with clock speed of 2.53 GHz and 4 GB of RAM, run-
ning Windows Vista. We compared the running times for
two images: one which is 512 x 512, the other 1024 x 1024.
‘We have broken down the time in terms of the time for the
Mean Shift (implemented using the fast Mean Shift tech-
nique of [35]) and the time for the remainder of the algo-
rithm. As can be seen from Table 2, our algorithm is roughly
3 times faster than the standard Random Walker.

Image Size Proposed Algorithm | Standard Random Walker

512 x 512 0.29 s (Mean Shift) +
0.63 s (remainder) =

0.92 s (total)

2.54s

1024 x 1024 || 1.24 s (Mean Shift) + 11.54 s
2.82 s (remainder) =

4.06 s (total)

Table 2 Speed comparison: proposed algorithm vs. standard Random
Walker.

Thus far, all of the examples presented have segmenta-
tions consisting of only two components. In Figure 7, we
show two examples with more than two components: the
swimming tiger is segmented into three components, and the
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hippo is segmented into four components. In both of these
examples, we see that the benefits conferred by the probabil-
ity distribution-based weights over the colour-based weights
carry over to the case of more than two components.

4.2 Quantitative Experimental Evaluation

In this section, we present a quantitative experimental eval-

uation of the algorithm. We have run the algorithm on the

Grabcut Database [2], which is the standard ground truthed

database for semi-automatic segmentation. The database con-
sists of 50 images, each of which is accompanied by a ground
truth (manual) segmentation. Further, the database contains

seeds to be used with each image; these seeds have been de-

rived by eroding the ground truth segmentation, according to

the procedure described in [2]. An example image from the

Grabcut Database, with corresponding ground truth segmen-

tation, seeds, and segmentation provided by our algorithm,

is shown in Figure 8.

Algorithm BE RI GCE Vol
Graph Cuts 3.276 | 0.970 | 0.028 | 0.196
Random Walker 3.206 | 0.972 | 0.026 | 0.185
P-Brush: p=1.25 || 3.241 | 0.971 | 0.028 | 0.193
P-Brush: p=1.50 || 3.214 | 0.972 | 0.027 | 0.189
P-Brush: p=1.75 || 3.206 | 0.972 | 0.027 | 0.187
Ours 2.980 | 0.975 | 0.007 | 0.174

Table 3 Quantitative comparison of our algorithm versus the state of
the art. Note that for BE, GCE, and Vol smaller is better; whereas for
RI, larger is better. We outperform the five state of the art algorithms
in all four criteria.

For each image, our algorithm yields its segmentation,
against which we would like to compare the ground truth
segmentation provided in the database. To do so, we com-
pute four separate quantitative criteria, each of which allows
for the comparison of two segmentations. We now describe
each of these criteria briefly; the interested reader is directed
to the references provided for a more in-depth discussion
of the criteria. The Boundary Error (BE), described in [39],
is a measure of the average distance between points on the
curves which form the boundaries of the segmented regions.
The Rand Index (RI) [40] measures the (normalized) num-
ber of agreements between the labels of pairs of pixels in
the two segmentations; for example, there is an agreement
if two pixels belong to the component in one segmentation,
and belong to the same component in the other segmentation
as well. The Global Consistency Error (GCE) [41] measures
the non-overlap of segments from the two segmentations,
and computes an error measure based on this. The Variation
of Information (Vol) [42] is an information-theoretic mea-
sure, which is inversely related to the Mutual Information.

Note that these four criteria are used in other works which
quantitatively evaluate segmentation, namely [43,44].

We report the average values, across the 50 images, of
each of the four criteria in Table 3. It is important to note that
for BE, GCE, and Vol, small values are better; whereas for
RI, a large value is better, and the highest possible value is 1.
We compare our results with state of the art semi-automatic
segmentation algorithms, as reported in [44] (see Table 1 in
that paper). In particular, we compare the results of our al-
gorithm with those of the Graph Cuts technique [13], the or-
dinary Random Walker technique with colour-based weights
[1], and the P-Brush technique [44] for a variety of p—values.3
The results are given in Table 3. We note that in terms of
all four criteria, we improve on the performance of all of
the five competing state of the art methods. This is perhaps
more impressive given the fact that many of the images in
the Grabcut Database do not contain significant amounts of
texture, so that colour-based weights should be adequate.

5 Conclusions

In this paper, we have presented a technique for improv-
ing the effectiveness of the Random Walker semi-automatic
segmentation scheme. In particular, we have shown how to
change the underlying image graph in two ways. The first
change involves a more sophisticated edge weight than the
standard edge weights that are used. Instead of basing the
weights on the grayscale or colour distance between neigh-
boring vertices, we instead base it on the difference in the
foreground and background probability densities. These new
weights are much more robust, and allow for modeling of
texture. Both qualitative and quantitative comparisons have
demonstrated the effectiveness these new weights lend to the
method.

Second, we have described a much more compact graph,
which is achieved with the aid of the Mean Shift technique.
Instead of using the standard image graph, which is regular,
we substitute an irregular graph with vertices equal to the
Mean Shift segments, and edges between adjacent segments.
This leads to a graph which is a few orders of magnitude
smaller than the original image graph, and to an algorithm
which is concomitantly faster.

A future direction involves computing probability den-
sities over more complex objects than colours. For example,
we may be interested in examining texture, construed as the
output of a filter bank.

3 Note that the P-Brush technique with p = 1 is in fact Graph Cuts,
and p = 2 is the ordinary Random Walker. Proving that this is the case
is the central result of [44].
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Fig. 8 An example from the Grabcut Database. (a) The image. (b) The ground truth segmentation. (c) The seeds — black and white pixels are
seeds, gray pixels are not used. (d) The segmentation from the proposed algorithm.
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