
Efficient and robust image descriptor for GUI object classification

Anastasia Dubrovina1
Computer Science, Technion
nastyad@cs.technion.ac.il

Pavel Kisilev1, Daniel Freedman1

IBM Labs Haifa, Israel
{pavel.prvt,d.e.freedman}@gmail.com

Sagi Schein, Ruth Bergman
HP Labs Israel

{sagi.schein, ruth.bergman}@hp.com

Abstract

Graphical User Interface (GUI) object classification
is essential for image-based software automation tools.
The challenges posed by GUI object classification are
significantly different from those in natural image clas-
sification. In this paper we present a novel image de-
scriptor developed specifically for GUI objects; it is
robust to various changes in the appearance of GUI
objects, such as various screen resolution, ”skin”, as
well as various operating system related. We use this
image descriptor with Support Vector Machine classi-
fier, and experimentally show the descriptor robustness
to the above transformations, and its superior perfor-
mance compared to existing image descriptors.

1 Introduction

In this paper we address the problem of the Graph-
ical User Interface (GUI) object classification. Exam-
ples of such GUI objects are presented in Figure 2. The
GUI object classification is essential for software au-
tomation tools based on record/replay paradigm , where
both the record and the replay stages are image-based,
thus mimicking the human-computer interaction.

The main challenge in GUI object classification
is the large variation in object’s appearance within a
given class, even if the same operating system (OS)
or browser are considered. For instance, the push but-
tons shown in Figure 2(e) exhibit variety of sizes, col-
ors, texts or images inside the objects. We assume that
the GUI objects differ by geometric and ”skin”-related
transformations. The geometric transformations may
be of two types: (1) scaling (potentially anisotropic)
due to changes in screen resolutions, as well as naturally
occurring differences such as edit box sizes, which can

1This work was performed while the author was with the HP Labs
Israel.

vary considerably in their aspect ratio; and (2) transla-
tion. We assume that the GUI objects in question were
found (or segmented) using some segmentation algo-
rithm, and that the object may not be centered within the
subwindow provided by the segmentation. The ”skin”
changes are related to the variety of themes and col-
ors provided by today’s operating systems, and these
changes are somewhat harder to quantify. Our approach
is to capture the look-and-feel information that remains
relatively unchanged under ”skin” transformations, and
not color information that may change greatly.

In order to cope with the above challenges in GUI
object classification task, we propose a novel type of
image descriptor developed specifically for the GUI ob-
ject classification task. The proposed descriptor is based
on the 1D version of the Fourier-Mellin Transform. In
addition, we incorporate information about object im-
age gradients and the percentage of the white color (we
explain the details in the next section). We show exper-
imentally that the proposed descriptor is robust to vari-
ous geometric and skin-related transformations of GUI
objects. Using the Support Vector Machine (SVM) clas-
sifier [8] along with the proposed descriptor yields high
correct classification rates for different GUI objects (see
Section 3).

Note that in this paper we do not use the context of
the GUI object, such as the surrounding objects, or the
way the object changes its appearance in time, in or-
der to perform the classification. Such context infor-
mation can be successfully employed together with the
proposed image descriptor to boost the classification ac-
curacy, as proposed in [4].

1.1 Previous work

In the context of image-based software automa-
tion products, such as Project Sikuli [11], Prefab
[3], EggPlant (http://www.testplant.com/
products/eggplant/), or related application for
data masking - Magen[7], the object recognition is

based on some variant of simple image template match-
ing, or text matching, and therefore, cannot cope with
the variability of intra-class transformations we dis-
cussed above. Project Sikuli [11] also employs SIFT
features [5], but these may not be informative for cer-
tain types of GUI objects, as we show in Section 3.

Many state-of-the-art object classification and
recognition methods use standard features, such as
SIFT, SURF [1], ASIFT [12], MSER [6], designed
for natural images. Further, as opposed to other
object classification frameworks, for instance, PAS-
CAL VOC Challenge (http://pascallin.ecs.
soton.ac.uk/challenges/VOC/), we deal with
very small objects (size of a typical radio button is
12× 12 pixels), of artificial nature. We have found that
our image descriptor tends to work much better than the
above features within the framework of relatively sim-
ple objects such as screen-shots and GUI objects.

The rest of the paper is organized as follows: we de-
scribe the details of the proposed image descriptor in
Section 2. We provide the results of classification of
different GUI objects, experimental evaluation of the
descriptor robustness, and compare it to the SIFT de-
scriptor in Section 3. We conclude the paper with Sec-
tion 4.

2 Image descriptor

For each GUI object we calculate the proposed im-
age descriptor (described in details below), using the
grayscale image of the object. In order to perform the
classification, we first use a dataset of labeled GUI ob-
jects with their descriptors to train an SVM classifier,
and then, given a new object, we calculate its descriptor
and feed to the classifier to detect the object class.

In the following we describe the details of construct-
ing the proposed image descriptor. It contains three dif-
ferent feature types.

1. Fourier-Mellin transform based feature. Given
a grayscale image I , we first calculate the derivatives of
its projections on x and y axes, as follows

Ix(x) = ∂
∂x

(∑
y I(x, y)

)
,

Iy(y) = ∂
∂y (
∑

x I(x, y)) .
(1)

Then we apply a 1D Fourier-Mellin transform to it.
Schematically, it can be represented as follows (shown
here for Ix, but is the same for Iy):

Ix
(
x
a − x0

) F−→ F{Ix}(au)eiux0
|·|−→

|F{Ix}(au)| u→ũ=log u−−−−−−−→ |F{Ix}(ũ+ log a)| F−→

F {|F{Ix}|} (v)e−iv log a |·|−→ |F {|F{Ix}|} (v)| ,
(2)

where F denotes the Fourier transform, a is the scaling
factor and x0 is the horizontal shift.

First, we take the Fourier Transform of the 1D sig-
nal, that is of the derivatives of the image projections.
Then we take its absolute value; this operation elimi-
nate the horizontal and the vertical shifts in the spatial
domain. We then use only half of the spectrum, that
is the positive frequencies, as it is symmetric anyway.
Next, we take the log scale in the frequency domain;
this operation converts the scale into a new shift. Sim-
ilarly, taking the second Fourier Transform and the ab-
solute value eliminates the scale dependence. (Again,
we use only positive frequencies). At the end, we get a
shift and scale invariant representation, and it’s length
is 1

4 of the length of the original signal (since we halved
the length by using twice only positive frequencies). In
order to obtain a fixed-length representation for image
of arbitrary size, we zero-pad Ix to have 1024 samples
(or downsample it to have 1024 samples, if Ix is larger)
before we calculate the first Fourier transform. Thus the
result of this 1D Fourier-Mellin transform is a vector of
256 samples. After we concatenate transformed Ix and
Iy signals, we have a 512-dimensional descriptor.

2. Histogram of gradient directions (angles)
based feature We calculate the angles of gradients in
the grayscale image, wrap them to be in the range
[0, π)), and calculate their 4 bin histogram. We weigh
the gradient angles by their magnitude, and also mul-
tiply them by triangle window weights according to
how close they are to the bin centers, as proposed by
David Lowe in his article on SIFT. This descriptor helps
mainly to separate radially symmetric objects such as
radio buttons from the rest of the object classes.

3. Percentage of white pixels This descriptor calcu-
lates the percentage of the pixels with gray values larger
than a predefined threshold (we used 245 for this). This
descriptor helps to separate edit boxes and push buttons
or other rectangular objects which are not empty (as edit
boxes are). (In general, the above threshold can be learn
from the database, though we did not do it).

Concatenating the above three types of features re-
sults in a 518-dimensional vector descriptor. Figure 1
illustrates the process of descriptor calculation. Note
that the proposed descriptor size is independent of the
original object image size.

Finally, we would like to use the above image de-
scriptor to perform the classification of GUI objects us-
ing the SVM classifier. We use use the non-linear ver-
sion of SVM, namely Kernel SVM, where the kernel
is taken to be the commonly used Gaussian kernel be-
tween the descriptor vectors. That is, given two images
of GUI objects, I1 and I2, and their descriptors f1 and
f2, respectively, we measure the similarity between I1
and I2 by

K(f1, f2) = exp(−γ ‖f1 − f2‖22) , γ > 0. (3)

Figure 1. An illustration of the descriptor
(signature) computation.

The Gaussian bandwidth γ is chosen by a cross-
validation procedure.

3 Experimental results

In this section we show the results of the GUI ob-
ject classification obtained with the proposed image de-
scriptor. To perform the descriptor evaluation we cre-
ated a dataset of 258 segmented objects belonging to
five GUI object classes: check box, edit box, list box
opener, push button and radio button. Examples of ob-
jects from these five classes are shown in Figure 2. We
used this dataset both to train the Kernel SVM clas-
sifier (details in the previous section), and to perform
the cross-validation procedure to find the optimal SVM
parameters. In our code, we used the LibSVM Kernel
SVM implementation [2].

3.1 Classification with the proposed image de-
scriptor

In order to evaluate the quality of the classification
with the proposed descriptor we randomly divided the
above dataset into non-overlapping training and test-
ing sets. We used training sets of different sizes -
40% − 90% of the whole dataset size. We performed
10 experiments for each one of these training set sizes
- each time we randomly drew the necessary number of
the training examples from the dataset. We then cal-
culated the average number of the correctly classified
objects from all five classes, normalized by the test set
size, as a function of the the training set size. The results
are shown in Figure 3, by a solid line with diamond-
shaped markers.

3.2 Descriptor persistence

In order to evaluate the robustness of the proposed
descriptor to geometric transformations we assembled a
set of shifted, scaled and incorrectly segmented versions

(a) Radio buttons (b) Check boxes

(c) List box openers

(d) Edit boxes

(e) Push buttons

Figure 2. Examples of different objects
from our dataset; all snapshots were
taken from applications running on Win-
dows Vista operating system.

Figure 3. Percentage of correctly classi-
fied objects as a function of a training set
size.

of an object from our dataset (see Figure 4). We then
trained the SVM classifier using the objects from our
dataset, excluding the transformed push buttons, and
classified the transformed versions of our object. All
of them were correctly classified as push buttons. Note
that since we are interested in GUI objects, their seg-
mentation can be made relatively accurately, therefore
examples of incorrect segmentation in Figure 4 may
not happen in practice. Nevertheless, we saw that we
could perform their classification even for these extreme
cases.

Figure 4. Examples of possible transfor-
mations of a GUI object (upper leftmost):
shift, scaling, object state (before or af-
ter the mouse click), erroneous segmen-
tation.

Figure 5. Examples of push buttons with
the detected SIFT features.

3.3 Comparison with SIFT descriptors

In this section we compare the proposed descriptor to
the state-of-the-art SIFT descriptor [5]. In order to per-
form the classification we adopted the Bag Of (Visual)
Words (BOVW) approach used in [9]. As the GUI ob-
jects in question are very small, we cannot rely on SIFT
feature detector. Also, the high inter-class variability
in object appearance causes the SIFT feature detector
find inconsistent features along the same class. Figure
5 shows an example of several push buttons with SIFT
features calculated using Vedaldi’s implementation of
SIFT algorithm [10] for Matlab c©. The detected SIFT
features are marked with blue circles, where the circle
size represents the feature scale. Smaller objects have
no features detected.

Therefore, instead of searching for SIFT features,
we used the image pixels with high gradient magnitude
value (higher than a predefined threshold of 10) as fea-
ture points. For these feature points we calculated mod-
ified SIFT descriptors: we used fixed windows of size
8 × 8 around each feature point, and calculated gradi-
ent histograms in its four subwindows of size 4 × 4,
thus obtaining descriptors of length 16. We then per-
formed vector quantization of collection of the descrip-
tors obtained for all the objects, into 500 classes, and
used the quantized vectors as visual words. Finally, the
object descriptors were calculated as histograms calcu-
lating the number of appearances of the above visual
words in each one of the object images.

We performed the classification as described in Sec-
tion 3.1, using the SIFT descriptors. The graph of the
correct classification percentage is shown in Figure 3
(a dashed line), together with the correct classification
percentage obtained using the proposed descriptors (a
solid line). Though the BOVW with SIFT descriptors
performs quite well, the proposed descriptor yields bet-
ter classification.

4 Conclusion

We presented a novel image descriptor designed for
GUI object classification. We showed how it could be
coupled with the Support Vector Machine classifier, to
achieve robust classification of GUI objects from sev-
eral selected GUI object classes, despite high inter-class
object image variability.

References

[1] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded
up robust features. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 404–417,
2006.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a li-
brary for support vector machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

[3] M. Dixon and J. Fogarty. Prefab: implementing ad-
vanced behaviors using pixel-based reverse engineering
of interface structure. In Proceedings of the 28th in-
ternational conference on Human factors in computing
systems, CHI ’10, pages 1525–1534. ACM, 2010.

[4] D. Lehavi, O. Barkol, and S. Schein. Visibly push-
down languages for a gui parsing application with prob-
abilistic lexer. In Semantic Computing (ICSC), 2011
Fifth IEEE International Conference on, pages 296 –
299, 2011.

[5] D. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, 2004.

[6] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide-baseline stereo from maximally stable extremal
regions. Image and Vision Computing, 22(10):761–767,
2004.

[7] S. Porat, B. Carmeli, T. Domany, T. Drory, K. Kveler,
A. Melament, and H. Nelken. Masking gateway for en-
terprises. In O. Grumberg, M. Kaminski, S. Katz, and
S. Wintner, editors, Languages: From Formal to Natu-
ral, volume 5533 of Lecture Notes in Computer Science,
pages 177–191. Springer Berlin / Heidelberg, 2009.

[8] B. Schölkopf and A. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. The MIT Press, 2002.

[9] J. Sivic and A. Zisserman. Video Google: Efficient
visual search of videos. In J. Ponce, M. Hebert,
C. Schmid, and A. Zisserman, editors, Toward
Category-Level Object Recognition, volume 4170 of
LNCS, pages 127–144. Springer, 2006.

[10] A. Vedaldi. An open implementation of the SIFT de-
tector and descriptor. Technical Report 070012, UCLA
CSD, 2007.

[11] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using
gui screenshots for search and automation. In UIST’09,
pages 183–192, 2009.

[12] G. Yu and J.-M. Morel. ASIFT: An Algorithm for
Fully Affine Invariant Comparison. Image Processing
On Line, 2011.

