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Chapter 1

*

Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar Hillel, Dael Freedman,
Simon Stachniak, Cem Keskin

Abstract Practical real time hand pose recognition requires a dlessif high ac-
curacy, running in a few milliseconds speed. We present alradassifier architec-
ture, theDiscriminative Ferns Ensemble (DFE), for addressing this challenge. The
classifier architecture optimizes both classification d@eel accuracy when a large
training set is available. Speed is obtained using simplaryifeatures and direct in-
dexing into a set of tables, and accuracy by using a largectgpaodel and careful
discriminative optimization. The proposed framework iplégl to the problem of
hand pose recognition in depth and infra-red images, usuggyelarge training set.
Both the accuracy and the classification time obtained amsiderably superior to
relevant competing methods, allowing one to reach accueaggts with run times
orders of magnitude faster than the competition. We showirgafly that using
DFE, we can significantly reduce classification time by iasiag training sample
size for a fixed target accuracy. Finally, Scalability to eyéanumber of classes is
tested using a synthetically generated data set of 81 slasse
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1.1 Introduction

The tradeoff of speed versus accuracy is an important teypdely discussed in
the object detection and recognition literatuté,[7, 3, 19, 25]. In applications like
Natural User Interface (NUI), algorithms have to obtainhthigcognition accuracy
in real time, on low power platforms. Often accuracy must b&imed with only
a small fraction of the available CPU resources, reserviR@ Cycles for other
operations. The tradeoff is natural: high accuracy reguangch representation, with
considerable computational cost at all levels of the syst&rthe lowest level, this
includes using dense sampling of complex local descridtots27]. Further on,
multiple spatial aggregation layers are employéed ], with large dictionaries at
higher levels. At the highest level the best accuracy isnoftetained using non-
linear kernels 18, €], requiring kernel computation with many support vectors.

In this section we attack the problem of hand pose classditatsing infra-
red (IR) and depth images from a time of flight depth camerahéncontext of a
NUI application. There are dual demands for high accuradyamery low com-
putation budget, the latter a fraction of a millisecond omw-eEnd CPU. For our
problem, standard techniques achieved reasonable enocogfaeay for a moderate
training set size, but were unable to meet the classificdiina requirement. One
can improve speed by modifying the parameters of such tgqabsj for example,
one may reduce grid density or dictionary size. Howevereggrpents show that this
approach is limited: when the target speed is obtained acgwrops too much.

This calls for a wider consideration of recognition systdmased on machine
learning. Beyond accuracy and speed, these systems haemaldoerformance
characteristics: generalization ability (i.e. ability lEarn from a relatively small
training set size), training time, and memory consumptiuppose that it is possi-
ble to collect a very large training set, there is no signiftdanitation on training
time, and a moderate amount of memory is available at tewt-fT he question then
becomes: for a fixed accuracy target, can we trade trainingize for increased
speed at test time?

The algorithm proposed here pushes the speed-accuradgeaat the expense
of larger training sets using three steps. First, simpleineariant features are used,
with sharp non-linearity, as they are fast to compute. Usiteyge enough training
set, we can hope that the task-relevant invariance will benkd instead o pri-
ori encoded. Second, and most important, an architecture arnge Icapacity and
minimal computation is introduced, based on an ensemblargéltables encoding
the end results. Such table-based classifiers, termeds’fgin24, 19, have high
capacity with a VC-dimension higher thall for a single £-entry table, and close
to M2K for a M-tables ensembte Third, since the classifier form presents a hard
learning problem, with high capacity and minimal prior, wevdlop a discrimi-
native optimization framework for a fern ensemble, whicla ideparture from the
generative formulation used previously for ferns.

1 Assuming that the underlying space is of dimension higher khamdMK respectively, which
are satisfied for the image sizes considered



Fig. 1.1 Examples of hand images from our data set. The left columns coeramples of 'Open’
/Closed’ and 'Lasso’ respectively. The two right columns camtaxamples of the complement
class 'Other’.

Focusing on speed optimization, we use as features spgtje@gates of highly
simplistic features, i.e. pixel-pair comparisons; A sets@nble) of lookup tables
(ferns) are then built based on sets of such bit featuresh fesio is based on a set
of K simple binary features and a large table bféntries. The binary features are
concatenated into an index, and the corresponding index inthe table contains
a weight contribution, summed across the ferns to get thédiassification. Each
table can be regarded as an efficient codeword dictionanyafis a patch into one
of 2K words, yet at the cost df operations. The resulting architecture is highly
non-linear, and a feed-forward push of an image throughlit mguires multiple
bit computations and table access operations.

Ferns are traditionally formulated generatively, i.e nditional class probabil-
ities are stored at the table entries. In contrast, we stiggesing the ensemble
discriminatively by minimizing the regularized hinge lpgs., the loss minimized
by Support Vector Machines (SVM). The minimization techugds related to ideas
from the Predictive Feature Selection (PFS) algoritt¥n It is done agglomera-
tively in a boosting-like framework, promoting complemaniness between chosen
ferns and between bits in a single fern.

The main technical contribution of this section is in theadiuction of aDiscrim-
inative Ferns Ensemble (DFE) approach, and empirically demonstrating its ability
to considerably shift the speed-accuracy curve. The mathaplplied to hand pose
recognition from IR and depth images, and compared to thediesnatives for
this task. In this comparison, the DFE achieves accuracyeoable or better while
being one to two orders of magnitude faster. Specificallg isignificantly more



accurate than a classification based on deep random treed) hdwve been used

for similar tasks {7, 25], and considerably more accurate than a more standard en-
semble of random ferns5[ 24]. Several general object recognition methods were
also applied to the task, combining fast dense SIFT feat&ESY, random forest
dictionaries, and SVMZ3, 30, 29]. The best results achieved were slightly less ac-
curate than DFE, but classification time was two orders ofmtade (i.e. 100 times)
slower. DFE is also shown to be efficient when the number afsela increases, uti-
lizing ferns sharing between classes and an ECOC (Errore€timg Output Code)
classification methodology minimizing the number of clfisss trained.

A second contribution is that we empirically show significanprovements in
classification speed — for a given target accuracy — can biewazhby collecting
larger training sets. This is done by optimizikg (log of the table size) anil
(number of ferns) for a given training set size. In other vgoiitla DFE classifier is
accurate, but not fast enough, collecting larger traingtgcan be used to accelerate
classification speed. Note that this trade-off is diffeffenin the well known trade-
off between training set size and accuracy.

The approach presented was found practical and was useadrtdtte hand pose
recongition in XBox-1, shipped in Early 2014.

We discuss related work in Secti@r?, and present our approach in Sectiof
In Sectionl.4we summarize a set of experiments in which ingredients aftéinod
are tested and the approach is compared with competingited® We briefly
conclude in Sectiof.5.

1.2 Relevant Work

With the emergence of chea3ensors, and primarily the Kinect sensor, pose
estimation and recognition in IR+depth images are increggistudied in recent
years P5, 15,5, 1, 16,17, 10, 26, 20]. Compared to working with RGB images, the
depth information enables easier segmentation of bodg,mnpler occlusion rea-
soning, and usage of simpler features enabling real timkcapipns. We focus here
on techniques applied to hand pose recognition and estimaind more general
techniques which bear some similarity to the proposed DFthoake

An influencing line of work uses random forests as the maih veith the notably
successful application of this technique to body pose @sitom in Xbox-360 P5].
In [16] a random forest is trained to classify pixels according aod part labels.
The hand parts positions are then estimated by finding theembdhe posterior
part probability using mean shift. InL] this method is extended to a two-stage
method. In a pre-processing stage the pose space is clligiewes0 clusters, cor-
responding to global hand shapes. A first random forestiisedato classify pixels
as belonging to images from one of the 50 clusters. At a selayrd, 50 different
random forest 'experts’ are trained, one for each of theietasPart position estima-
tion is performed by using the chosen expert from the secayet | or by splitting
decisions regarding pixels among their most plausibleéetg) Good empirical re-



sults are reported for shape classification (using the fiegfe3 and for pixel part
classification.

The pose estimators mentioned above were trained using tasets of syn-
thetic data, but the random forest based approach was @ddodnclude a mix-
ture of labeled real data, unlabeled real data and synttatacin P6]. The forests
trained in this approach included mixed regression andifieation trees, and sev-
eral criteria for node splitting were combined, includingrderion demanding low
variance and a criterion demanding that real labeled dataamthetic data with the
same label will share the same node.

While the random forest approach usually relies on very snfpatures, an-
other line of work focuses on learning more complex featureEgrating RGB and
depth information. The methods suggested&inl] learn hierarchical descriptors
which aggregate RGB and depth information across incrgbsiarger spatial area.
Both show significant improvements in general object ret@musing descrip-
tor level fusion of RGB and depth. I2{] an approach is presented which learns
spatio-temporal complex features for a difficult gestureogmition task. Increas-
ingly complex features are created by composition of bagarators like filtering,
spatial averaging and nonlinear operations. A geneticrilgo is used to choose
the most discriminative features for a linear SVM classifier

A different traditionally popular approach poses hand pesegnition as a re-
trieval problem [L3, 10]. In [1(] a large dataset of synthetic images with known pose
parameters was created. The hand is carefully segmenteddidepth images are
used) and compared to database images using several digtanetions: Chamfer
distance . distance between the depth images, and a combination afithdm-
pirical results show that the correct match is often rankgh im the list of retrieved
images.

As stated above, fast recognition methods are often basegdasor ferns ensem-
bles 25, 17, 24, 6, 12, 9]. Ferns are often regarded as a special case of trees, ihwhic
the condition encoded at all the nodes with the same deptleigical. Boosting of
decision trees is a highly popular technique for objecta&ir and classification in
RGB[12, 9], but usually shallow trees of depth-13 are used, which cannot capture
fine-grained partitions. Ferns ensembles were suggestedant years for RGB im-
age classificationd], keypoint recognition 4] and nearest neighbor finding 9.

In these works ferns in the ensemble are chosen indepepdd#rghch other, and
bits in a single fern are chosen at random or using an inféomain criterion. At
the leaves conditional class posteriors are computed aareiged across ferns]|
or regulated with a prior and multiplie@4].

Among the trees based methods mentioned above, Specifiballyworks pre-
sented atf5, 16, 17] are similar to the DFE, as they also allow fast, real time<la
sification using simple pixel-comparison features and @ éresemble architecture.
However, the DFE departs significantly from the random foeesl random ferns
tradition in its resort to discriminative optimization. mDFE the fern ensemble
is regarded as providing the features for a largeSVM problem. Ferns and bits
are not chosen at random, nor using a general informati¢eriom, but picked to
minimize the loss of this program. Specifically, the gratlieinthe SVM program



w.r.t adding new features is computed at each round and asgdide choice of
the bits in the new fern. Ferns (and bits) are hence grown tmb®wlementary, like
in a gradient boosting process’]. The weights at the fern’s table, corresponding
to the leaves of a tree, are not conditional probabilities,rbther SVM weights.
Due to this optimization a DFE is more accurate, requires tasmory and less
CPU time than approaches presented’af 1.6, 17]. We discuss the differences in
sectionl.3.2 and compare the methods empirically in sectich

1.3 The Discriminative Ferns Ensemble

We describe the Fern Ensemble classifier in Secti@iland analyze its running
time in Sectionl.3.2 In Sectionl.3.3we present the training procedure we use.

1.3.1 The Discriminative Ferns Ensemble Classifier

The ferns ensemble classifier operates on an image patcbh wid denote by,
consisting ofP pixels. For a pixelp, we denote its neighborhood B(p), and we
denote bylyp) the subpatch which is comprised of the pixelsis neighborhood.

In what follows, we will considety ) as a vector irRIN(P)l. The ferns ensemble
consists oM individual ferns, and its pipeline includes three layersdastructure
we now describe.

Bit Vector Computation Let us focus on one particular fenm. For each
pixel p, we compute a local descriptor of its neighborhood subphigly using
computationally-light pairwise pixel comparisons of tieem

lgy>lg,  for dz,qz € N(p) (1.1)

Such a comparison provides a single bit value of 0 or 1. Fovexience of notation,
we may rewrite the bit obtained am(BTIN(p)), where is a|N(p)|-dimensional
sparse vector, with two non-zero values, one equallingelgther equalling-1; and
o is the Heaviside function. For each farmand pixelp, there areék bits computed,
and we denoFe thiéh_ bit asbrgfk.: a((B&“)TIN(p)). Collecting all the bits together,
theK-dimensional bit vectobf' is:

by = 0(B™n(p) € {0,1}€ (1.2)

where the matriB™ has rowsg")T,..., (BMT; and now the Heaviside functiam
is applied element-wise.

Histogram of Bit Vectors We are interested in some translation invariance, so
we take a spatial histogram over codewords. However, a84hthe bit-vectors
themselves are the codewords; there is no need for an intermediateecingtstep.



Algorithm 1 Ferns Ensemble: Classification
Input: Animage | of sizeS, x S,
classifier paramete(®™, A", WMM__ threshold
B™ e RK*A™ AT (1, S x {1,..,S,}, W™ € R
Output: A classifier decision i{0, 1}
Initialization: Score=0
For all fernsm=1,...M
For all pixelsp € A™

Compute a k-bit index= g (B™lyp))

Score=Scorew™Mindex]
Return (Scoret)

Denote the histogram for the" fern by H™(b), where bit vectob € {0,1}¥; then

H™b)= S &(bT—b) (1.3)

peA™

whered is a discrete delta function, arl" C {1,..,P} is the spatial aggregation
region for fernm. Note thatH™ is a sparse vector, with at md3nhon-zero entries.

Histograms concatenationThe final decision is made by a linear classifier ap-
plied to the concatenation of tié fern histograms.

f(I)WTH(I)%l S wiH™(b) (1.4)
m=1pc{0,1}K

where H(1) = [H1(1),...,HM(1)] € NMZ* andW = W2 ... WM] € RM? s a
weight vector. Combining Steps 1-3 in the pipeline, we ari@ the Discrimina-
tive Ferns Ensemble Classifier:

M
fhp)=3% 5> wy > 8(a(B"Inp) —b) (1.5)
m=1be{0,1}K  pcAM

with the parameterp = {W™,B™ AM}M

The operation of a DFE is sketched as a three-layered netindiigure 1.2
Each fern can be conceived as a two layer network. The first kytracts a highly
non linear patch descriptor around each pigeh the aggregation area. the patch
descriptor is based on comparisonkofixel pairs, squashed int§ bits and con-
catenated into an single index. This index is then used ta gedight from the fern
table. The operation is repeated for all pixels in the feratisp aggregation area
(the yellow rectangle in the second layer), and the continbuwof all the pixels are
summed. At a third layer the contributions of all the ferns lmearly added and
compared to a threshold to get the decision.
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Fig. 1.2 A DFE network A single Fern in a DFE can be viewed as a feed-forward netwoitk wi

one highly non linear layer and a second spatial summation laperDFE is a 3-layer network
linearly aggregating the output M ferns. See text for details.

1.3.2 Classification Speed

Algorithm 1 describes the operation of a DFE classifier at test time. Tihelipe
is extremely simple. For each fern and each pixel in the $eagigregation region
we compute the bit vector, considered as a codeword indexférim table is then
accessed with the computed index, and the obtained weighitlisd to the classifi-
cation score. The complexity is(@IKK) whereA is the average number of pixels
per aggregation regior = % SmlA™.

It is interesting to compare the CPU time of a single fern tangle tree with
the depthK. From a pure computational complexity perspective, thelremof op-
erations for both i¥<. Nevertheless, a closer look at their match to common CPU
architectures, including cache hierarchies and vectohimas, reveals large differ-
ences in expected run time. First, a tree needs to storettb@rbputation parameters
for 2¥ internal nodes. More importantly, during tree traverselworking set is ac-
cessed times in an unpredictable manner. A fern’s operation rexpuimly a single
access to its large working s&¥/["), as the index computation is done using a small
amount of memoryQ(K) in size, which fits in the cache without a problem.

Second, the usage of fixed pixel pairs in a fern enables catipatof the K-bit
index without indirection and with an unrolled loop. Moreportantly, ferns are
amenable to vectorization using SIMD (Single Instructibhyltiple Data) opera-
tions, while trees are not. Applying a fern operation to saMexamples at the same
time (i.e. vectorizing the loop ovar in Algorithm 1) is straightforward. Doing so
for a tree is likely to be extremely inefficient since eachragée require a different
sequence of memory accesses, and gathering such scat@¢aethdnot be done in
parallel in a SIMD framework. In Sectich4.1.4we further discuss the differences
of ferns and random forest, in terms of classification time lsx@mory.



1.3.3 Discriminative Training

The DFE classifief (I; p) is given in Equation.5), and we would like to learn the
parameterp = {W™ B™ A™MM  from a labeled training sef(I',y')}N ;. Unlike
prior work on ferns, e.g.Z44], we turn to a discriminative rather than a generative
formulation. Specifically, we pose the problem as reguéatilinge-loss minimiza-
tion, similar to standard SVM:

N .
min §||W|2+cgl -y t(iip)]., (L6)

where[]; indicates the hinge loss, i.g]+ = max{z 0}. Rewriting Equation1.4)
with explicit parameter and image dependence one gets

f(l;p) = Z)V\/'Q‘Hm(b,l ;B™A™) (1.7)

We can see thdtis linear inW, so optimizing (.6) w.r.tW for fixed {B™ A™M
is a standard SVM optimization. However, optimizing for tager parameters is
challenging, specifically since they are to be chosen frorargel discrete set of
possibilities. Hence, we turn to an agglomerative appraackhich we greedily
add ferns one at the time. As can be seen from Equalid), @dding a single fern
amounts to an addition of2new features to the classifier. In order to do that in
an sensible manner, we extend known results for the caseingle $eature addi-
tion [2, 4].

Let f(I) = y[—i'wix (1) be alinear classifier optimized with SVM ahdf, {1i,yi}\ ;)
the hinge loss obtained for it (EqL.@)) over a training set. Assume we add a sin-
gle featurex- to this classifierf™(1) = fo9(1) +w xt(1), with small jw | < e.
Theorem 1 in P] gives a linear approximation of the loss under these camdit

N
L(F) = L(f) —w ZaiymL +0(W) (1.8)

wherea; are the example weights obtained as a solution to the dual Bkad-
lem. The weightsa; € [0,C] are only non-zero for support vectors. For a can-
didate features , the approximated lossl () is best reduced by choosimg =
e-sign(yN; aiyixt), and the reduction obtained R{x_ )2| TN ; aiyix-|. The PFS
algorithm [] is based on training SVM using a small number of featurdigied
by computing the scorB(x) for a large number of unseen features; this allows one
to add/replace existing features with promising featunedatates. Note that the
scoreR(x) of a feature columix can be seen as the correlati®n(x) = x- Z, where
Z=(z,..,Z,) with z = y;q; is the vector of signed example weights.

Here we extend the aforementioned idea to a set of featusastraduced by
a single fern. Assume we have trained an SVM classifier ovesria énsemble
fM=1(1) with M — 1 ferns, and we now wish to extend to an additional fern. As-



Algorithm 2 Ferns Ensemble: Training

Input: A labeled Training sefl;,yi }N |
ParameterM, K,C, N, {A™} ¥4
Output: A classifier(B™ A" W™MM__ threshold
Initialization: Z[i] = 1/|{lilyi = 1}| ifyi =1,
Zfi] = ~1/[{lilyi = —1}|if yi = -1
Form=1,..M
Fork=1,. ,K
Forc=1,..N;
Sample a candidate colunf}, ¢ RN(P)
Fori=1,.,N
ComputeH™(b, I;,¢) = H™(b, 1;; BY)
with BE' = [B", -, B 1, Bee)
Forb e {0,1}K
ComputeRz () = 3 pe o1k Rz(H™(D: BeL))
Choose winning candidaté = argmax:R(c),
and seff" = B
Train an SVM withm2X featuredV - [H*, .., H™] —t
SetZ][i] = yiq; fori = 1,..,N with a; SVM dual variables
Set{W™M _ 't based on the last SVM training.
Return(B™ A™ WMM__ threshold.

m=1’

sume further that the new weight vector is small wjth"||., < €. Then we have

M) =Mt +e S wWiHM(bI) (1.9)
be{0,1}K

with [wi'| < 1 for all b. Treating the new fern contribution as a single feature, we
can apply the theorem stated above and get

L) <L —eS ay S wgHT1)
i= be{0,1}K

N
=L(fM ¢ > m/g‘zlaiyiHm(b,n) (1.10)
be{0,1}K i=

where the approximation in the first equation is due to omissif O(g?) terms.

If we wish to minimize the approximated loss, the optimalichdor w{J' is w{}' =
sign(y N, aiyiHM(b,1i)), in an analogous way to the single feature case. With these
w' we get

LM ~L(f" ) —e 5 RHM(b) (1.11)
be{0,1}K

This result is an intuitive extension of Theorem 1 i for the case of multiple
feature addition.



Our algorithm for fern ensemble growing is based on itecabetween SVM
training and building the next fern based on Equatibri{). This procedure is de-
scribed more precisely in Algorithra At each fern addition step we use an SVM
classifier trained on the previous ferns to get signed exampights, in a manner
similar to boosting. The ensemble scqrg. (o 1y« Rz(H™(b)) is used to grow the
fern bit-by-bit in a greedy fashion. At each bit additionga#tave randomly select
Nc candidates for the magk", termedB';; each candidate is chosen by randomly
drawing the two pixels needed for the comparison. The wimbihis chosen as the
one producing the highest ensemble score. We currently doptionize the integra-
tion area variable§An}M_, , but we experiment with several choices in Sectiof

The algorithm is presented for a single binary problem, butasily extended
to training of several classes with sha®8, B™ and separaté/™. In the simplest
alternative independent SVMs are trained, one for eacls @&énterest. During
optimization, all the SVMs are trained at each fern addjtamdR(c) scores of all
of them are summed to make the bit choice. Due to the sharitigeofame fern-
based features, running time scales sub-linearly in thebeuwrf classes. However,
memory and training time are linear in the number of clasBesa large number
of classes, Error Correcting Output CoddgECOC) can be used to decrease the
number of SVM classifiers trained, and enable a logarithiadiisg of training time
and memory in the number of classes. In secligh2we present experiments with
this approach, showing that it enables economic classifighsenhanced accuracy.

1.4 Empirical Results

The method described in this paper was developed, testedangared to alter-
natives on a very large data set for hand shape recognitlemtask was discrimi-
nation between 3 hand state classes, and the resultingfielasss shipped as part
of the Microsoft Xbox-1 console in early 2014. We describesth experiments in
sectionl.4.1 In sectionl.4.2we describe experiments conducted on a synthetically-
generated data set of 81 hand state classes. Scalabilitiatgeanumber of classes

is obtained by fern sharing and utilizing an Error Corregi@utput Codes (ECOC)
approach.

1.4.1 Real data experiments

We describe the data set used in Sectich1.1and the method’s implementation
details in1.4.1.2 The impact of the main ingredients and parameters of thbadet

is tested inl.4.1.3 We compare the accuracy-speed trade-off enabled by the pro
posed method and various competing techniquds4ril.4 We conclude by show-
ing the trade-offs between accuracy, classification timaning sample size and
memory in1.4.1.5



1.4.1.1 Data Set

The task we consider is to recognize three different hanpleshand to discriminate
between them and other undefined hand states. The recaogrésaolts are used
as part of a NUI interface. The shapes are termed 'Open’,s&lj 'Lasso’ and
'Other’, as shown in Figuré.1. The class 'Other’ includes a large variation in hand
poses, including hands holding objects. Hand detectionhigesged by tracking the
skeleton in a sequence of depth+IR images, using methoes loasp 5].

The images used for recognition are cropped around thectatrhand position,
rotated and scaled to two 3636 images of the depth and IR channels. A simple
pre-processing rejects IR and depth pixels where the dsptlearly far beyond the
hand, thereby removing some of the background. The aligharehrotation of the
hand is based on estimated wrist position and is sometinaesimate, making the
recognition task harder.

A dataset of 519,000 images was collected and labeled fral@movsequences
of different people. Images have considerable variabitityerms of viewpoints,
hand poses, distances and imaging conditions. The imagestalen at distances
of up to "4 meters from the camera, where the quality of imagegs] and the depth
measurement of fingers may be missing. Data was dividedriittrig and test sets
with 420,000 and 99000 images respectively, such that persons from the tiginin
set do not appear in test images and vice versa. The data iested to give over-
representation to hard cases. Given the properties of tetayoal was to achieve
2-5% false negative rate, at a false positive rate of 2%.eSime the test data is hard,
the error rate in real usage scenarios is expected to be roweln. |

1.4.1.2 Implementation Details

In our experiments we tested the number of bits perfeimthe range of3, 18], and
the number of fernM in [6, 768. At each bit addition steN. = 40 pixel comparison
features were randomly generated for evaluation. Theadzagregation area of the
fern Ay, was randomly chosen to be one of the 4 standard quadrante ahtge
patch, and the neighborhodd(p) is 17x 17 pixels. We have experimented with
limiting the aggregation are@,, further by imposing a virtual checkerboard on the
guadrant pixels: for odd bit indices features are only comgdior 'white’ pixels,
and for even indices features are computed only for 'blacikés This policy was
found to be useful in terms of accuracy-speed trade-offs.

We have used the LibLinear packagé]for sparse SVM training of our models.
The classifier was implemented in C and running times arerteg@n Intel core
i7, 2.6GHz CPU, using a single thread. Computation time ®rted for a single
image in milliseconds, without usage of SIMD optimizatioAscuracy of a single
binary classifier, i.e. one hand pose versus all, is compasethe false negative
error rate at the working point providing a false positiv®)Fate of 2%. Accuracy
figures reported here are averaged over the three classel&¢ted this approach



rather than multi-class error rate, as in each specific Ndbescontext the three
classification scores are combined in a different way.

Fig. 1.3 Successes and failures of the DFE classifidPairs of depth+IR images are presented,
where the top row shows the IR images and the bottom the depthesriagevery pair. The 3
pairs on the left show successfully classified pairs for the 3 hanpkstiasses considered (Open,
Closed, Lasso). The pairs on the right show miss-classification dfaise negatives).
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Fig. 1.4 DFE complexity parameters. Left:False negative rate of the DFE (at false positive
rate=002 as a function oK, the number of bitsRight: False negative rate as a function of
M, the number of ferns, for several training procedures. DFE ishaseline variation. For both
SVM.Indep and SVM.Rand, SVM is used as final classifier. For Syitlep the bits are selected
usingR(c) score, but without PFS weight update, i.e. using ini@] for all ferns (see Algorithm
2). For SVM.Rand bits are randomly selected. NB.Boosted is NB&ges with fern boosting and
entropy-gain bit choice.

1.4.1.3 Parameters and Variations

Success and failure examples of the DFE classifier can bes€&egurel.3. We now
concentrate on understanding the contribution to perfaoeaf algorithm compo-
nents.

Complexity of layers 1: At the first layer we encode patches into codeword
indices, and its complexity is controlled by the number d¢§ K used for the en-



coding. In Figurel.4 (Left) the classifier accuracy is plotted as a functiorKdbr
fixedM = 50. Based on this graph, we select the valuK ef 13 in our subsequent
experiments, as it is the minimal value which yet provideselto optimal accuracy.

Complexity of layers 2: At the second, spatial aggregation layer, complexity is
controlled by several algorithmic choices. First, we cae oailtiple aggregation
areas, or a single aggregation area containing the wholgarua all ferns. Second,
we can use or avoid using the checkerboard technique for atatpnal saving. Re-
sults are reported in Figufe5 (left). Baseline DFE usdd = 50 ferns with quadrant
ferns, checkerboard policy. The number of ferns used indnelitions 'single area’
and 'no checkerboard’ are reduced by a factor 4 and 2 to gssifiers with ap-
proximately the same speed as the the baseline. The rekaltstee advantage of
baseline DFE over alternatives, hence led to its definitoibaseline’.

Complexity of layer 3, optimization policy: Figure1.5 (left) shows the accu-
racy for several ensemble training strategies. The simgiternatives uses Naive
Bayes, where the leaf weights are based on class posteoioalpiities |, 24]. The
ferns are trained independently, with bits chosen at ran@taive Bayes, Rand bits)
or by maximization of information gain (Naive Bayes, Ml).rRbese alternatives,
the false negative rate is highAlso, further increasing of the number ferns does
not help as much as in the DFE or boosting framework, as tms fare learned in-
dependently. Another alternative is training complemegntarns by boosting, with
bits chosen to maximize the information gain on the boostévwgeighted sample
(Naive Bayes + Boosting). This significantly improves aemyrrelative to Ml and
random selection, but is still less accurate than DFE. Eiduf (right) shows the
effect of number of ferndyl, on the false negative rate for selected methods.

From the above results, we can conclude that using discatiaen (SVM) ap-
proach for both the final classifier and selecting of the fats, Isignificantly im-
proves accuracy.

The table in Figurd..5also shows that IR and depth are not redundant, and using
both of them significantly improves accuracy relative taxgsinly one of them.

Pipe variation % FN @ FP=29 = 10"

Baseline DFE 2.18 w

Single aggregation area 3.15 E

No checkerboard samplin 2.42 i}

Naive Bayes + Boosting 3.87 £ Forest

Naive Bayes, Ml bits 35.9 Daisy

Naive Bayes, Rand bits 47.6 . SIFT

Only Depth 4.65 10 -

Only IR * 5.23 N 10 10" 10° 10'
CPU time [mS]

Fig. 1.5 Comparison to alternatives. Left:Error for several DFE and Ferns algorithm variations.
See text for explanatiomight: Best results of false negative rate under constraint of clasificat
CPU time for various methods and parameters for each method. A6y We modified values of
M, K. For random forestl[/], the points shown are for one and two trees of depth 21. Fadt SIF
can achieves accuracy comparable to DFE, but at cost of morexth@® classification time.

2 Note that FN is measured at false positive rate of 2%. Hence, FNS@84 is far better than
random. At FP=10% the false negative rates of Naive Bayes Mlant Rand bits drops to 11%
and 18% respectively.



1.4.1.4 Speed-Accuracy Trade-Off Comparison

We have compared the fern ensemble method to several diveraachitectures,
which also have an emphasis on a good speed-accuracy tifadeeomethods com-
pared are:

e Random forest applied to pixel comparisons as suggestedy [

e A 3-stages pipeline: a) Fast dense SIFT features compntasimg the VLFeat
library [2€]. b) Encoding into a bag of features using a random foregtadic
nary [23]. ¢) SVM classification with a linear approximation of thestuigram
intersection kernel, according t@q]. We also tried the same pipeline, but re-
placing the fast SIFT with dense Daisy featufe$]

All the methods were implemented in C/C++, using the originehor’s code when
possible. They were chosen for comparison as each of therdevatoped with the
aim of obtaining a good balance of speed and accuracy. Nriltijprking points
were tested for each of these methods, representing vasjimization for speed
and accuracy. For the fast SIFT method, shifting betweeadspad accuracy was
done by changing the stride parameter, controlling theitlensthe SIFT greed.
For the Daisy we also choose the Daisy complexity to optirsjzeed/accuracy, as
recommended in30)].

1° o

[ ——FN=3%
4]
£ E
=
c 10" =
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104 L i H = o i
10° 107° 10 10° o 10" . 0 10°
Fraction of training set Fraction ¢f training set

Fig. 1.6 Middle: Accuracy obtained by DFE as a function of training sample sizexiX is the
fraction of training set size relative to the full set (420,00@&ges)Right: The classification CPU
time, as a function of training sample size. This is measured foraeegget false negative rates
(for a fixed FP=2%).

The (CPU time, accuracy) of the best working points obtaibgaach of the
algorithms, including DFE, are plotted together in Figliré(left). We see that ran-
dom forest can achieve similar classification time to th&BE, but is significantly
less accurate (FN=10.6% vs. FN=2% for DFE, for the same CRigdt). Consis-
tent with [L7], we found that the best accuracy is achieved by training emall
number of deep trees, with little improvement when incregidine number of trees.
This leaves us with less flexibility on controlling the traffeoetween accuracy and
classification time. There are several reasons why using®® DFE is about as
fast as using two trees. First, each fern operates on relgwmall number of pixels
(50), which is only "4% of the image. Second, calculatingféras bits requires less



operations than forest with the same depth, as discussezttin81.3.2 Third, the
number of bit per fern is 13, while the depth of tree is 21. Atbe memory size of
the forest is in order of 80MB vs. 2.5MB of ferns. Since 80MBat fit into the
cache, we pay with more cache misses.

The accuracy of with fast SIFT and Daisy alternatives, camm@gch the accuracy
of the DFE. However, their classification time is two orden@gnitudes longer. By
optimize them for speed we significantly loose accuracyauitiyetting to the target
classification time.

In the next section, we show that in addition to high accui@uy fast classifi-
cation, DFE approach enable significant flexibility for wars trade-offs of speed,
accuracy, memory size and generalization from variousSizé&aining set.

1.4.1.5 Training Sample Size and Memory

As discussed before, the fern ensemble architecture tisgmbeesd and accuracy for
sample size and memory. For each training set size, comstran memory and
classification time we optimize accuracy by tunikgand K. In this section we
show that increasing the training set size enable us nottoniyprove accuracy,
but also to significantly reduce the classification time.

Figure 1.6 (middle) shows the effect of increasing the training se¢ sim FN,
for fixed M andK. We modify the training set size we use from “0.2% of the full
set (820 images) to the full training set (420,000 imagelsg Jubset of training set
is selected randomly. As expected, the false negative ealieces with increase of
training set size.

In our problem, however, even with a training set size of080,samples (0.07 in
x-axis of Figurel.6) the accuracy we got met minimum requirements for the prod-
uct. However, even after full code optimization, the clsation time significantly
exceeded the target budget. The question is if we can redassifccation time by
increasing the training set size and modifyiMgandK.

Figure 1.6 (right) shows the classification time as a function of therafning
set size, relative to the full set, for various target falsgative rates. We can see
that for a fixed target accuracy, the classification time @relduced by an order of
magnitude, if we increase the training set size by an orderagfnitude. In general,
as training set size increases, we slightly incréésend significantly reduc# to
achieve same target accuracy with lower classification.tifhé can be explained
by the effect ofK on the capacity of each fern, and hence should be adapted to th
training set size. On the other hands, the accuracy can bewexb by increasing
M, but at a significant cost of classification time. These tesatle significant for
building practical systems. While it is well know that incsggy training set size
enables improvement in accuracy, here we show that it carredisice classification
time significantly.

Finally, we show the tradeoff between memory and accuraaplerl.4.1.5
presents false negative rate versus memory consumptienféon ensemble. Mem-
ory consumption can be reduced by lowering eitheor K, and in the table we



LUT entries|Ferns #M) |Bits # (K) |% FN @ FP=29
768 48 4 10.7
1536 96 4 7.78
3072 96 5 6.07
6144 192 5 5.42

12288 384 5 4.21
24576 384 6 2.97
49152 768 6 2.32

Table 1.1 Accuracy obtained by DFE under memory limits. LUT entries is thtaltnumber of
entries in all the lookup tables (ferns) together, whichk$42 In our implementation, each LUT
entry requires 6 bytes - two bytes per class, representing thé\8&ights.

chose the optimall, K parameters for each memory limit point. From the table we
can see adding a memory constraint leads to significant tieduo the number of
bits per fern, and increasing the number of ferns. The réswiry different from
the case of optimizing for classification time, where optimanber of bits is high.
This is not surprising, as the memory size increases expiaflgrwith number of
bits, but classification time increases only linearly. Tasult classification time is
about 5-10 larger when we optimize for memory instead of firesl. Note, how-
ever, that in our baseline implementation, with 50 ferns E38its the memory size

is about 2.5MB, which still fits into the cache.

1.4.2 Class scalability experiments

In this section we show how a DFE can efficiently scale up torgelaaumber of
classes, while maintaining its beneficial accuracy anddspkaracteristics. Experi-
ments are done using a synthetically generated data setai@i§des.

1.4.2.1 Data set and parameters

We used POSER, a commercially available software packaggeherating a data
set of hand pose depth images. A data set 9862 examples was generated, and
randomly split into 37390 training samples and RR7 test samples. Data variance
was controlled by varying 4 independent parameters of haneémtion: the 3 ro-
tation angles and the basic hand pose. Figureshows examples from the data set
and explains its 4 dimensions of variability, as well as tigels that were given to
the images. The 3 rotation angles (bend, twist and side) weifermly sampled
in ranges covering the viewing sphere of a frontal hand. Tdésepvas generated
by choosing a base pose from the set (flat hand, half-open, loped hand), and
adding a small amount of noise to the bend parameter of eagérfindependently.
Each of the 4 dimensions was quantized into 3 different elgsand the final label
is the combination of the 4 single-dimension labels.

The data included only depth images, 8 bits per pixel, andteogt was made to
synthesize IR images. In each image the hand bounding bofowad (the tightest



Fig. 1.7 Synthetic data for81 classesHand state classes were generated by varying 4 indepen-
dent variables: hand bend angle, twist angle, side angle, as®llgft Column: The bend angle
was sampled uniformly in [-30,90] degrees, with O correspondirsgvertical hand. The range was
split into 3 equal partitions to get the bend label o2 br 3, examples of which are given at rows
1,2,3 respectivelySecond column:The twist angle was sampled uniformly in [-60,60] degrees.
Like the bend angle, it was quantized uniformly into 3 clas$&gd column: The side angle was
sampled uniformly in [-45,45] degrees and quantized into 3 ckaBsght Column: 3 basic finger
poses were considered: flat (top), half open (middle), and dpettogn). Independent finger noise
was added to each finger's open/close parameter. The classvabskt as a Cartesian product of
the 4 base labels.

box containing all non zero pixels), and the hand box wasateddo 64x 64 pixels
images, which are the input of the DFE.

Preliminary experiments were done witfdlof the training set in order to choose
DFE parameters and configuration. According to these exgaris we chose the
pixel neighborhood\(p) to be a large 3% 32 patch. The integration arég, was
set to the internal 3R 32 square of the 64 64 image. Checkerboard sampling was
applied, but the use of quadrant ferns was not found to beisupthus, we use the
same integration area for all the ferns. The optimal numbeéite was found to be
14.

1.4.2.2 Experiments

We have experimented with two variants of M-classificatihe first is the ba-
sic one-vs-all, in which 81 SVMs are trained, one per classm&ntioned in sec-
tion 1.3.3 fern bits are chosen to optimize the sum of the gradieneséc) of all
the classes. A second alternative we tried was to solve fdr efthe label dimen-
sions independently, i.e. we built 4 classifiers predictimgpose, bend angle, twist



angle and side angle of the hand. Each of these 4 classifietis;n, is composed
of 3 one-vs-all SVMs, trained to separate one cell of theii@mtfrom the other
2 cells. Overall, in this approach only 12 SVMs are trainad the final label is
determined based on the product code of the predicted 4tdapets.

Figure1.8right) shows the multi-class accuracy obtained by bothhods as a
function of the number of ferns used. Both methods go bey®3d, 8vhich is quite
high considering the large number of classes and the lackaogimin the bound-
aries between classes. Interestingly the product code B&lBing only 12 classi-
fiers, achieves higher accuracy than the one-versus-aliorewhen the number of
ferns is large £ 10). Hence, in this domain this version dominates the omstge
all version in all respects, as it also provides higher speddst and training, and
requires less memory.

For comparison, we plot the accuracy obtained by a genehatikained forest,
using code from17]. When trees of depth 14 are used (matching our 14-bit ferns),
performance is significantly inferior. The forest does éetthen its depth is not
limited, and in this case its maximal depth, limited by theadset size, is 18. Forests
of depth 18 are able to achieve 70% accuracy, but their mefootprint is very
large and becomes prohibitive for more than a few trees. We aperimented
with up to 4 trees in this setting, and it seems that accuraogiyrimprove with the
number of trees.

In table 1.8left) we compare the results obtained by the two DFE vession
the best results obtained by a classification forés} in terms of accuracy, speed
and memory. It can be seen that DFEs provide superior peafocein each of the
relevant measurements.

® @
a o o

=
'

=»=DFE 12C
=+DFE 81C

Multi class Accuracy
a2 2 3 3

Method Accuracy (%) Speed (ms)Memory (MB) O Forest D=14
DFE 12SVM, 100 Ferns ~ 84.5 4.87 385 0 ~9-Forest D=18
DFE 81SVM, 100 Ferns  81.7 14.54 260 5|

Forest 4Trees, D=18 70.3 12.62 179 50

Forest 1Tree, D=18 70.0 4.06 44 oo o ©----0-00-0"-0

DFE 12SVM, 10 Ferns| ~ 80.0 0.52 3.9 0 o o

Number of ferns/trees

Fig. 1.8 Results for81 classes Left:Multi-class accuracy, classifier speed and model memory
foot print of several hand classifielRight: Accuracy as a function of the number of ferns/trees
for DFE and Random forest classifiers.

1.5 Conclusions and Further Work

We have seen that thdéscriminative fern ensemble framework enables significant
push of the accuracy-speed envelope for visual recognitidiR+depth images.
Thin, efficient architecture, and discriminative optintiea were found important



for this purpose. The method was shown to be scalable in th&auof classes,
thanks to feature sharing among classifiers and an ECOC dwdtygy. In terms of
architecture, it would be interesting to extend the tatdeda approach to deeper
models with more table layers. Another interesting ditts to explore the trade-
off between classification time and training sample sizeotber algorithms, and
analyze this trade-off theoretically.
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