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Determining the nanoscale positions of point emitters forms 
the basis of localization microscopy techniques such as 
single-particle tracking1,2, (fluorescence) photoactivated 

localization microscopy (f)PALM3,4, stochastic optical reconstruc-
tion microscopy (STORM)5 and related single-molecule localization 
microscopy (SMLM) methods. These techniques have revolution-
ized biological imaging, revealing cellular processes and structures 
at the nanoscale6. Notably, most samples of interest extend in three 
dimensions, necessitating three-dimensional (3D) localization 
microscopy7.

In a standard microscope, the precise z position of an emitter is 
difficult to ascertain because the change of the PSF near the focus is 
approximately symmetric. Furthermore, outside of this focal range 
(≈± 350 nm for a high numerical aperture imaging system), the 
rapid defocusing of the PSF reduces the signal-to-noise ratio (SNR), 
causing localization precision to quickly degrade. One method to 
extend the useful z range and explicitly encode the z position is PSF 
engineering8–10. Here an additional optical element, for example a 
phase mask, is placed in the emission path of the microscope, modi-
fying the image formed on the detector11 (Fig. 1a); the axial position 
can then be recovered via image processing using a theoretical or 
experimentally calibrated PSF model10–16.

In practically all applications, it is desirable to be able to localize 
nearby emitters simultaneously. For example, in super-resolution 
SMLM experiments, the number of emitters localized per frame 
determines temporal resolution. In tracking applications, PSF 
overlap from multiple emitters often precludes localization, poten-
tially biasing results in emitter-dense regions. The problem is that 
localizing overlapping emitters poses a great algorithmic challenge 
even in two-dimensional (2D) localization and much more so in 
3D. Specifically, encoding the axial position of an emitter over 
large axial ranges (>3 μm) requires the use of laterally large PSFs, 
for example the Tetrapod10,17 (Fig. 1b), increasing the possibility of 
overlap. Consequently, while a variety of methods have been devel-
oped to cope with overlapping emitters for the in-focus, standard 

PSF18–20, a recent comparison of state-of-the-art software revealed 
that performance in high-density 3D localization situations is far 
from satisfactory, even for top-performing algorithms21.

Deep learning has proven to be adept at analyzing microscopic 
data22–30, especially for single-molecule localization, handling 
dense fields of emitters over small axial ranges (<1.5 μm)20,31–38 or 
sparse emitters spread over larger ranges39. Moreover, an emerg-
ing application is to jointly design the optical system alongside 
the data processing algorithm, enabling end-to-end optimiza-
tion of both components37,40–47. Here we present DeepSTORM3D, 
consisting of two fundamental contributions to high-density 3D 
localization microscopy over large axial ranges. First, we employ a 
convolutional neural network (CNN) for analyzing dense fields of 
overlapping emitters with engineered PSFs, demonstrated with the 
large-axial-range Tetrapod PSF10,17. Second, we design an optimal 
PSF for 3D localization of dense emitters over a large axial range 
of 4 μm. By incorporating a physical simulation layer in the CNN 
with an adjustable phase modulation, we jointly learn the optimal 
PSF (encoding) and associated localization algorithm (decoding). 
This approach is highly flexible and easily adapted for any 3D 
SMLM dataset parameters (emitter density, SNRs and z range). We 
quantify the performance of the method by simulation and dem-
onstrate the applicability to 3D biological samples (mitochondria  
and telomeres).

Results
Dense 3D localization with DeepSTORM3D. To solve the 
high-density localization problem in 3D, we trained a CNN that 
receives a 2D image of overlapping Tetrapod PSFs spanning an 
axial range of 4 μm and outputs a 3D grid with a voxel size of 
27.5 × 27.5 × 33 nm3 (Fig. 1c). For architecture details and learning 
hyper-parameters see Supplementary Notes 2.1 and 4. To compile a 
list of localizations, we apply simple thresholding, local maximum 
finding and local averaging on the output 3D grid (Supplementary 
Note 5).
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We compare our method to a fit-and-subtract-based match-
ing pursuit (MP) approach48 (see Supplementary Note 7) as we are 
unaware of any other methods capable of localizing overlapping 
Tetrapod PSFs. To quantitatively compare our method with MP solely 
in terms of density, we simulated emitters with high signal-to-noise 
ratio (30,000 signal counts, 150 background counts per pixel) at ten 
different densities ranging from 1 to 75 emitters per 13 × 13 μm2 
field of view (FOV) (for the definition of density see Supplementary 
Note 1). The results are shown in Fig. 2. As evident in both the 
Jaccard index21 (see Supplementary Note 6) and the lateral/axial  

root mean square error (RMSE) (Fig. 2a), the CNN achieves 
remarkable performance in localizing high-density Tetrapods. In 
the single-emitter (very low density) case, where the performance of 
the CNN is bounded by the discretization on the 3D grid, the RMSE 
of the MP localization is lower (better). This is because for a single 
emitter, MP is equivalent to a continuous maximum likelihood esti-
mator (MLE) (Supplementary Note 7), which is asymptotically opti-
mal49, whereas the CNN’s precision is bounded by pixilation of the 
grid (half voxel of 13.75 nm in xy and 16.5 nm in z). However, quickly 
beyond the single-emitter case, the CNN drastically outperforms 
MP at both high and low SNR (see Supplementary Note 7.3). A sim-
ilar result was obtained when compared to a leading single-emitter 
fitting method14 applicable also for the multiple-emitter case21 (see 
Supplementary Note 8.2). Furthermore, to put our method in con-
text with other existing approaches, we tested DeepSTORM3D on 
the EPFL Double Helix high-density challenge21 obtaining favorable 
results (see Supplementary Note 8.1).

Next, we validated our method for super-resolution imaging 
of fluorescently labeled mitochondria in COS7 cells (Fig. 3 and 
Supplementary Videos 1–3). We acquired 20,000 diffraction-limited 
frames of a 50 × 30 μm2 FOV and localized them using the CNN in 
≈3 h 20 m, resulting in ≈360,000 localizations. The Tetrapod PSF 
was implemented using a fabricated fused-silica phase mask (see 
Supplementary Note 9.1) and the CNN was trained solely on simu-
lations matching the experimental conditions (see Supplementary 
Note 4.1). The estimated resolution was ≈40 nm in xy and ≈50 nm in 
z (see Supplementary Note 9.3). To visually evaluate localization per-
formance in a single frame (Fig. 3a), we regenerated the correspond-
ing 2D low-resolution image and overlaid the recovered image on 
top of the experimental frame (Fig. 3a and Supplementary Video 1).  
As seen in the overlay image, the emitter PSFs (3D positions) are 
faithfully recovered by the CNN. Emitters with an extremely low 
number of signal photons were ignored. For further acceleration in 
acquisition time see Supplementary Note 9.2.

Optimal PSF design for dense 3D imaging. The Tetrapod is a 
special PSF that has been optimized for the single-emitter case by 
Fisher information maximization10,17. However, when considering 
the multiple-emitter case, an intriguing question arises: what is 
the optimal PSF for high-density 3D localization over a large axial 
range? To answer this question we need to rethink the design metric; 
extending the Fisher information criterion10 to account for emitter 
density is not trivial and while it is intuitive that a smaller-footprint 
PSF would be preferable for dense emitters, it is not clear how to 
mathematically balance this demand with the requirement for high 
localization precision per emitter.

Our PSF design logic is based on the following: as we have 
already established that a CNN yields superior reconstruction for 
high-density 3D localization, we are interested in a PSF (encoder) 
that would be optimally localized by a CNN (decoder). Therefore, 
in contrast to a sequential paradigm where the PSF and the local-
ization algorithm are optimized separately, we adopt a co-design 
approach (Fig. 4a). To jointly optimize the PSF and the localiza-
tion CNN, we introduced a differentiable physical simulation layer, 
which is parametrized by a phase mask that dictates the micro-
scope’s PSF. This layer encodes 3D point sources to their respective 
low-resolution 2D image (see Supplementary Note 3). This image 
is then fed to the localization CNN, which decodes it and recovers 
the underlying 3D source positions. During training, the net is pre-
sented with simulated point sources at random locations (projected 
on a fine grid) and using the difference between the CNN recovery 
and the simulated 3D positions quantified by our loss function (see 
Supplementary Note 4.2), we optimize both the phase mask and 
the localization CNN parameters in an end-to-end fashion using 
the backpropagation algorithm50 (see Supplementary Note 3.3 and 
Supplementary Video 4). The learned PSF (Fig. 4b) has a small  
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Fig. 1 | Optical setup and approach overview. a, The light emitted from a 
fluorescent microscopic particle is collected by the objective and focused 
through the tube lens into an image at the intermediate image plane. 
This plane is extended using a 4f system with a phase mask placed at the 
Fourier plane in between the two 4f lenses. b, The implemented phase 
mask (using either a liquid crystal spatial light modulator (LC-SLM) 
or fabricated fused silica) dictates the shape of the PSF as a function 
of the emitter’s axial position. c, After training, our CNN receives a 2D 
low-resolution image of overlapping PSFs and outputs a 3D high-resolution 
volume, which is translated to a list of 3D localizations. Blue empty spheres 
denote simulated ground truth positions along the surface of an ellipsoid. 
Red spheres denote CNN detections. The Tetrapod PSF is depicted here; 
however, the approach is applicable to any PSF, including those optimized 
by the net itself (Fig. 4). Scale bars, 3 μm.
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Fig. 3 | Super-resolution 3D imaging over a 4 μm z range. a, Representative experimental frame (top) and rendered frame from the 3D recovered positions 
by the CNN overlaid on top (bottom). Scale bar, 5 μm. b, Super-resolved image of mitochondria spanning a ≈4 μm z range rendered as a 2D histogram, 
where z is encoded by color. Scale bar, 5 μm. c, Zoom in on white rectangle (i) in b. Scale bar, 0.5 μm. d, Relative intensity averaged along the shorter side of 
the white rectangle in c. e, XZ cross-section of white rectangle (ii) in b. Scale bar, 0.5 μm. f, Relative intensity along the dashed white line in e. The experiment 
was repeated independently for n = 3 cells, twice analyzing 20,000 frames and once analyzing 10,000 frames all leading to similar performance.
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lateral footprint, which is critical for minimizing overlap at high 
densities. The learned phase mask twists in a spiral trajectory caus-
ing the PSF to rapidly rotate throughout the axial range, a trait that 
was previously shown to be valuable for encoding depth8.

To quantify the improvement introduced by our new PSF, we 
first compared it to the Tetrapod PSF in simulations. Specifically, 
we trained a similar reconstruction net for both the Tetrapod and 
the learned PSF using a matching training set composed of simu-
lated continuous 3D positions along with their corresponding 2D 
low-resolution images. The learned PSF performs similarly to the 
Tetrapod PSF for low emitter densities (Fig. 4d–f). However, as the 
density goes up (higher than ≈0.2 emitters

μm2

h i

I

) the learned PSF out-

performs the Tetrapod PSF in both localization precision (Fig. 4e,f) 

and in emitter detectability (Jaccard index) (Fig. 4d). This result is 
not surprising, as the learned PSF has a smaller spatial footprint and 
hence it is less likely to overlap than the Tetrapod (Fig. 4c). For fur-
ther analysis of the learned PSF see Supplementary Note 10.

Volumetric telomere imaging and tracking. Next, we demonstrate 
the superiority of the new PSF experimentally by imaging fluores-
cently labeled telomeres (DsRed-hTRF1) in fixed U2OS cells. The 
cell contains tens of telomeres squeezed in the volume of a nucleus 
with ≈20 μm diameter (Fig. 5a,b). From a single snapshot focused 
inside the nucleus, the CNN outputs a list of 3D positions of telo-
meres spanning an axial range of ≈3 μm. Using the Tetrapod PSF 
snapshot, the Tetrapod-trained CNN was able to recover 49 out of 
62 telomeres with a single false positive, yielding a Jaccard index 
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 with the same simulated emitter positions, using the Tetrapod (left) and the learned PSF (right). d, Jaccard index 
comparison between two CNNs with the same architecture, one trained to recover 3D positions from 2D images of Tetrapod PSF (black) and the second 
trained to recover 3D positions from 2D images of the learned PSF (orange). Each data point is an average of n = 100 simulated images. Average s.d. was 
≈6% for both PSFs. e,f, Lateral and axial RMSE comparison between the same two CNNs from d. Average s.d. was ≈6 nm for both PSFs. Scale bars, 3 μm.

Nature MetHods | VOL 17 | July 2020 | 734–740 | www.nature.com/naturemethods 737

http://www.nature.com/naturemethods


Articles NATuRe MeTHODS

of 0.77 (Fig. 5d). In comparison, using the learned PSF snapshot, 
the corresponding CNN was able to recover 57 out of the 62 telo-
meres with only two false positives, yielding a Jaccard index of 0.89 
(Fig. 5e). The recovered positions were compared to approximated 
ground-truth 3D positions (Fig. 5c), obtained by axial scanning and 
3D fitting (see Supplementary Note 12 and Supplementary Video 5).  
The precision of both PSFs was calibrated experimentally using a 
z scan of a fluorescent microsphere (see Supplementary Note 10.4 
and Supplementary Video 6).

To qualitatively compare the recovered list of localizations to the 
acquired snapshot, we fed this list to the physical simulation layer 
and generated the matching 2D low-resolution image (Fig. 5d,e). 
As verified by the regenerated images, the 3D positions of the telo-
meres are faithfully recovered by the CNNs. Moreover, the misses  
in both snapshots were either due to local aberrations and/or  
an extremely low number of signal photons (see Supplementary 
Note 13.1 for more experimental results).

Finally, a great advantage facilitated by our scan-free learned PSF 
is increased volumetric temporal resolution. To demonstrate the 
full capability of our method for dense multiparticle localization, 
we simultaneously tracked 48 telomeres, diffusing within the vol-
ume of a live mouse embryonic fibroblast (MEF) cell, at 10 Hz over 
50 s (Fig. 6). Such a measurement can provide information on 3D 
nuclear rotation (Fig. 6a and Supplementary Video 7) and hetero-
geneity in motion type (Fig. 6b–d), at timescales that are typically 
unexplored by volumetric localization microscopy51.

Discussion
In this work we demonstrated 3D localization of dense emitters 
over a large axial range, both numerically and experimentally. 
The described network architecture exhibits excellent flexibility 
in dealing with various experimental challenges, for example low 
signal-to-noise ratios and optical aberrations. This versatility is 
facilitated in three ways: (1) the net was trained solely on simulated 
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data, thus producing sufficiently large datasets for optimization; (2) 
the phase mask that governs the PSF was optimized with respect 
to the implementation in the imaging system, that is the pixels of 
the spatial light modular, rather than over a smaller subspace, for 
example Zernike polynomials10; and (3) the CNN localization algo-
rithm was designed in coordination with the development of the 
PSF, thus the system was optimized for the desired output37 rather 
than a proxy.

Attaining a sufficiently large training dataset has thus far been a 
major limitation for most applications of CNNs. With this limita-
tion in mind, the application of CNNs to single-molecule localiza-
tion would seemingly be an ideal one, as each emitter’s behavior 
should be approximately the same. This uniformity is broken, how-
ever, by spatially varying background, sample density and variable 
emitter size in biological samples (Supplementary Note 4.1), all of 
which diversify datasets and necessitate relevant training data. By 
implementing an accurate simulator (Supplementary Note 3), we 
have shown that it is possible to build a robust network entirely in 
silico, generating arbitrarily large, realistic datasets with a known 
ground truth to optimize nets. This aligns with our previous work 
in 2D SMLM20.

For super-resolution reconstructions using the Tetrapod PSF, the 
simulator was particularly important due to the highly variable SNR 
of emitters in the sample. Here, our net was able to selectively local-
ize emitters even in very dense regions by focusing on those with a 
high SNR (Fig. 3). To optimize a PSF while simultaneously training 
the net, the simulator was also essential, as it would be prohibitively 
time consuming to experimentally vary the PSF, while recording 
and analyzing images to train the net.

A notable aspect of our optimization approach is that the opti-
mized PSF is found by continuously varying the pixels of an initial-
ized mask, while evaluating the output of the localization net, thus 
the final result represents a local minimum (Fig. 4). By changing 
the initialization conditions, we have recognized several patterns 
that indicate how the optimal PSF varies with the experimental con-
ditions, namely, density, axial range and SNR (see Supplementary 
Note 2.2). Some of the recurrent features are intuitive: for example, 
in dense fields of emitters with limited SNR, the optimized PSFs 
have a small footprint over the designed axial range, enabling 
high density and compacting precious signal photons into as few 
pixels as possible. What distinguishes the net PSFs over predeter-
mined designs is the utilization of multiple types of depth encoding, 
namely, simultaneously employing astigmatism, rotation and side 
lobe movement (Fig. 4), all of which have been conceived of and 
implemented previously, but never simultaneously.

This work, therefore, triggers many possible questions and 
research directions regarding its capabilities and limitations. For 
example, how globally optimal is the resulting PSF? Similarly, how 
sensitive is the resulting PSF and its performance to different loss 
functions, CNN architectures, initializations (for example with an 
existing phase mask) and the sampled training set of locations? 
Currently, it is unclear how each of these components affects the 
learning process, although we began to partially answer them in 
simulations (see Supplementary Notes 2.2 and 10). Finally, the 
co-design approach employed here paves the way to a wide variety 
of interesting applications in microscopy, where imaging systems 
have traditionally been designed separately from the processing 
algorithm.
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Methods
Sample preparation. COS7 cells were grown for 24 h on cleaned 22 × 22 mm, 
170-μm thick coverslips in a six-well plate in DMEM with 1 g l−1 d-glucose (low 
glucose), supplemented with fetal bovine serum, penicillin–streptomycin and 
glutamine at 37 °C and 5% CO2. Cells were fixed with 4% paraformaldehyde and 
0.2% glutaraldehyde in PBS (pH 6.2) for 45 min, washed and incubated in 0.3 M 
glycine/PBS solution for 10 min. The coverslips were transferred into a clean six-well 
plate and incubated in a blocking solution for 2 h (10% goat serum, 3% BSA, 2.2% 
glycine and 0.1% Triton-X in PBS, filtered with 0.45-μm PVDF filter unit, Millex). 
The cells were then immunostained overnight with anti TOMM20-AF647 (Abcam, 
ab209606) 1:230 diluted in blocking buffer and washed five times with PBS. Cover 
glasses (22 × 22 mm, 170 μm thick) were cleaned in an ultrasonic bath with 5% 
Decon90 at 60 °C for 30 min, then washed with water, incubated in ethanol absolute 
for 30 min and sterilized with 70% filtered ethanol for 30 min.

U2OS cells were grown on cleaned 0.18-mm coverslips in a 12-well plate in 
DMEM with 1 g l−1 d-glucose (low glucose), supplemented with fetal bovine serum, 
penicillin–streptomycin and glutamine at 37 °C and 5% CO2. The day after cells 
were transfected with a plasmid encoding the fluorescently tagged telomeric repeat 
binding factor 1 (DsRed-hTRF1)51 using Lipofectamine 3000 reagent. At 24 h after 
transfection, cells were fixed with 4% paraformaldehyde for 20 min, washed three 
times with PBS and attached to a slide together with mounting medium.

Lamin A double knockout (lmna−/−) MEFs were cultured in phenol red-free 
DMEM/F-12 medium (Gibco, Thermo Fisher Scientific), which was supplemented 
with 10% fetal bovine serum and 1% penicillin–streptomycin solution (Biological 
Industries, Bet Ha-emek). Two days before imaging, cells were transferred to 15-mm 
coverglass-bottom culture plates (Nest scientific). After 24 h, cells were transfected 
with a plasmid encoding DsRed-hTRF1. The transfection mix was prepared by 
diluting 8 μg of the plasmid in 50 μl of serum-free DMEM/F-12 and separately 
diluting 24 μl of transfection reagent Polyjet (SignaGen Laboratories) in 26 μl of 
serum-free DMEM/F-12, then immediately adding the diluted Polyjet solution 
to the DNA mixture and incubating at room temperature for 20 min. The 100 μl 
DNA–Polyjet mix was then added dropwise to cell plates. Imaging experiments were 
conducted approximately 26 h after transfection and lasted for 1–2 h.

Optical setup. Imaging experiments were performed on the experimental 
system shown schematically in Fig. 1a. The 4f optical processing system was built 
alongside the side port of a Nikon Eclipse Ti inverted fluorescence microscope, 
with a ×100/1.45 NA oil-immersion objective lens (Plan Apo ×100/1.45  
NA, Nikon).

STORM imaging. For super-resolution imaging, a polydimethylsiloxane chamber 
was attached to a glass coverslip containing fixed COS7 cells. Blinking buffer 
(100 mM β-mercaptoethylamine hydrochloride, 20% sodium lactate and 3% 
OxyFluor (Sigma, SAE0059), modified from Nahidiazar et al.52, was then added 
and a glass coverslip was placed on top to prevent evaporation. Low-intensity 
illumination for recording diffraction-limited images was applied using a Topica 
laser (640 nm), on the Nikon TI imaging setup described previously and recorded 
with an EMCCD (iXon, Andor) in a standard imaging setup. For super-resolution 
blinking using the Tetrapod PSF, high-intensity (1 W at the back of the objective 
lens) 640 nm light was applied using a 638 nm 2,000 mW red dot laser module, 
whose beam shape was cleaned using a 25-μm pinhole (Thorlabs) in coordination 
with low-intensity (<5 mW) 405 nm light. Emission light was filtered through a 
500-nm long pass dichroic and a 650-nm long pass (Chroma), projected through a 
4f system containing the dielectric Tetrapod phase mask (see Supplementary  
Note 9.1) and imaged on a Prime95b Photometrics camera.

Super-resolution image rendering. Before rendering the super-resolved image 
(Fig. 3b), we first corrected for sample drift using the ThunderSTORM53 ImageJ 
Fiji plugin54. Afterward, we rendered 3D localizations as a 2D average shifted 
histogram, with color encoding the z position.

Telomere imaging. For telomere imaging in fixed cells, the 4f system consisted of 
two f = 15 cm lenses (Thorlabs), a linear polarizer (Thorlabs) to filter out the light 
that is polarized in the unmodulated direction of the LC-SLM, a 1,920 × 1,080 
pixel LC-SLM (PLUTO-VIS, Holoeye) and a mirror for beam-steering. A sCMOS 
camera (Prime95B, Photometrics) was used to record the data. The sample 
was illuminated with 561-nm fiber-coupled laser light source (iChrome MLE, 
Toptica). The excitation light was reflected up through the microscope objective 
by a multibandpass dichroic filter (TRF89902-EM-ET-405/488/561/647 nm Laser 
Quad Band Set, Chroma). Emission light was filtered by the same dichroic and also 
filtered by another 617-nm band pass filter (FF02-617/73, Semrock).

For volumetric telomere tracking in live cells, images were recorded with an 
EMCCD camera (Andor iXON), exposure time of 100 ms and EM-gain of 170. The 
sample was illuminated at ≈2 kW cm−2 with 561 nm light from a fiber-coupled laser 
(iChrome MLE, Toptica). All movies were recorded for 50 s (500 frames).

CNN architecture. In summary, our localization CNN architecture is composed 
of three main modules. First, a multiscale context aggregation module processes 
the input 2D low-resolution image and extracts features with a growing receptive 
field using dilated convolutions55. Second, an upsampling module increases  
the lateral resolution of the predicted volume by fourfold. Finally, the last 
module refines the depth and lateral position of the emitters and outputs 
the predicted vacancy grid. For more details regarding the architecture see 
Supplementary Note 2.

Statistics and reproducibility. The STORM experiment was repeated 
independently for n = 3 cells, twice analyzing 20,000 frames and once analyzing 
10,000 frames, all leading to similar performance. The fixed telomere experiment 
was repeated independently for n = 10 U2OS cells all showing similar 
characteristics and performance. The live telomere experiment was repeated 
independently for n = 10 MEF cells all showing similar characteristics and 
performance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.

Code availability
Code is made publicly available at https://github.com/EliasNehme/
DeepSTORM3D.
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1 Density definition

Usually when discussing volumetric density it is standard to define density as the number of emitters divided by the volume. However,
when these emitters are imaged onto a 2D sensor using depth-encoding PSFs (e.g. [1, 2]), this definition is misleading and does not
intuitively reflect the difficulty of localizing the emitters in 3D. This is due to the fact that larger axial ranges usually require PSFs
with a larger lateral extent [3], which means it is actually harder to localize the same number of emitters over a larger axial range as
their measured PSFs are more likely to overlap on the 2D sensor. On the other hand, if we define density in 3D, a larger axial range
corresponds to a larger volume, and thereby to a lower density.

Alternatively, if we define density using the standard 2D definition of emitters over area, higher density correlates with a more
ill-posed inverse problem regardless of the axial range. Nonetheless, the "apparent" 2D density is still PSF-dependent, and needs to be
calibrated with respect to the standard microscope in-focus PSF using an appropriate conversion factor. To calibrate this PSF-dependent
conversion factor, we used the following simple approach: for each axial slice within the PSF axial range, we counted the number of
nonzero pixels on the CCD that are above 15% of the maximal intensity (Fig. SN1.1a). We then took the average number of nonzero
pixels across the PSF axial range to be the mean lateral extent of the PSF. Finally, the resulting conversion factor is given by the mean
lateral extent of the 3D PSF divided by the mean lateral extent of the standard in-focus PSF. This resulted in a conversion factor of ≈6
for the Double Helix (DH) PSF covering a 2 µm axial range, and ≈11.2 for the Tetrapod PSF covering a 4 µm axial range.

Now, to understand what density range for a given PSF qualifies as "high density", we can translate it to the standard in-focus PSF

using the conversion factors above. For example, a density of 1.34
[

emitters
µm2

]
for the standard in-focus PSF translates to a density of

≈0.22
[

emitters
µm2

]
for the DH PSF, and a density of ≈0.12

[
emitters

µm2

]
for the Tetrapod PSF. Assuming the emitters are uniformly spread

across the middle portion of a ≈ 13× 13µm2 FOV, this corresponds to imaging 238 emitters with the standard in-focus PSF, as opposed
to 40 emitters with the DH PSF, and only 21 emitters with the Tetrapod PSF, all of which will result in ≈4100 nonzero pixels on the

sensor (Fig. SN1.1b). This also explains why the highest density with the DH PSF in the EPFL 3D challenge [4] was ≈0.3
[

emitters
µm2

]
.

Therefore, due to the considerations explained above and following [4] we defined density throughout this work as the number of
emitters divided by the FOV. In addition, example PSF images were included when necessary to provide visual guidance. However,

if the reader is interested in translating these numbers into the standard volumetric density (
[

emitters
µm3

]
), he can simply multiply the

reported density by a factor of 1
4 as our axial range throughout this work is 4 µm.

Of course, it is possible to use more complicated metrics that quantify the lateral spread of the PSF, but here we choose this simple
approach as it is intuitive and easily relates the 3D case to the more familiar 2D counterpart where the definition of "high density" is
more established.
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Finally, note that all of the above discussion disregards local density, and define density as a global measure over the entire FOV.
Although, to truely understand the difficulty of localizing nearby emitters one needs to take into account their clustering in space (e.g.
a similar analysis to [5]). For example, in SMLM experiments emitters are naturally bound to the underlying 3D structures they are
labeling; they are not uniformly distributed in the FOV. Therefore, locally, one can measure highly overlapping PSFs (Fig. 3a main
text), even when the average density is low. However, this makes the comparison of different PSFs more involved, and is beyond the
scope of this work.

2 CNN Architectures

Due to considerations explained later on, we used two different CNN architectures for localizing emitters and for learning a phase
mask. First, let us discuss the rationale behind the localization architecture (Fig. SN2.1). As a general rule of thumb, we tried designing
simple architectures with the minimal number of parameters needed to solve the problem. Moreover, to handle arbitrary image
dimensions we used fully-convolutional CNNs [6]. Furthermore, since the input image contains rich information that needs to be
carefully decoded, we passed it via concatenation to all consecutive layers with similar dimensions as an additional feature. To prevent
these connections from making the network extremely sensitive to the normalization scheme of the input image, we added a Batch
Normalization (BN) layer [7] at the beginning of the architecture that acts as a regularizer and can learn the right normalization of the
input image from our training set. To benefit from the input image statistics at test time, we first alter its mean and standard deviation
such that it matches the training set statistics:

Iin =

(
Itest − µtest

σtest

)
× σtrain + µtrain (S1)

Where µtrain, µtest, σtrain, σtest are the mean and standard deviation of the pixel values of the training set images, and the test image
respectively. Then, we feed Iin to the recovery net. While this is a sub-optimal normalization scheme, the resulting architectures
were more robust than using an Instance Normalization [8] approach since the test image statistics can vary significantly between
experiments. This normalization strategy was particularly useful for the telomere data where the SNR varied significantly between
experiments, and was less important for the mitochondria data which exhibited a very similar SNR throughout the STORM experiment.
Next, let us discuss the localization architecture in more details.

2.1 Localization CNN

The proposed architecture (Fig. SN2.1) has only ≈ 436K\612K trainable parameters and is composed of 3 main modules:

1. Multi-scale context aggregation module: we used dilated convolutions [9] to increase the receptive field of each layer while
keeping a fixed number of 64 channels. We set the number of convolution blocks to imax = 5. The maximal dilation rate dmax was
set according to the PSF lateral footprint: dmax = 16\4 for the Tetrapod and the learned PSF respectively (see Fig. SN2.1b). We
also include skip connections to improve gradient flow [10]. Note that this is different from typical architectures used for similar
localization tasks in computer vision such as 3D human pose estimation (HPE) [11, 12]. The rationale behind using a simpler
architecture with far fewer parameters is that our images have an "easier" context as opposed to extreme semantic variations
encountered in HPE.

2. Upsampling module: we used a simple upsampling module composed of two consecutive×2 resize-convolutions [13] to increase
the lateral resolution by a factor of 4. We used nearest-neighbor interpolation to resize the images. Although more sophisticated
upsampling layers with more representation capacity could be used, for example transposed convolution [14–16] or the more
recent sub-pixel convolution [17], these layers require a proper initialization to avoid chekcerboard artifacts [13, 18] and are not
necessary for our task. Assuming a CCD pixel-size of 110 nm, the lateral pixel-size of the upsampled features is 27.5 nm.

3. Prediction module: after super-resolving emitters in the lateral dimension, we further refine their axial position through 3
additional convolutional blocks with an increased number of channels. For a 4 µm range, we use 80/120 channels for the
telomere/mitochondria samples respectively, i.e. a voxel-size of 33/50 nm in z. The final prediction is given by a 1 × 1
convolution followed by an element-wise HardTanh [19] to limit the output range to [0, W]. As there are only few emitters in a
large vacancy volume the classes are highly imbalanced. To take this into account, we weight the ground truth locations by a
factor of W=800 determined empirically, and we allow the output of the net to be in the range [0, W]. This strategy allows us to
avoid gradient clipping, and enable meaningful gradients to flow throughout the network during training.

Note that depth is exchanged with channels as our architecture is composed of solely 2D convolutional layers. Afterwards, these
dimensions are permuted in the recovered volume. Finally, we threshold voxel-values and find local maxima in clustered components
to compile a list of 3D localizations (details in section 5).

In addition, we chose to work with a net that outputs a super-resolved volume (see section 4.2). However, recovering a vacancy grid
is not truly a limitation as it can be combined with a second coordinate-regression net that outputs a continuous list of localizations
[20]. Moreover, our recovery voxel-size with a 110 nm CCD pixel is either 27.5× 27.5× 33 nm3 or 27.5× 27.5× 50 nm3, which means
assuming the net predicts the right voxel, our precision is limited at worst to ≈ 20 nm in the lateral dimension, and ≈ 17\25 nm in the
axial dimension. This limit is achieved only when encountering an emitter near one of the voxel vertices which is a very unlikely
event assuming a uniform distribution. Moreover, as confirmed by our simulations, for images with more than a single emitter the
localization precision is not limited by the recovery voxel-size, especially for higher emitter densities.
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Finally, the choice of the recovery voxel-size in the axial dimension (∆z = 33\50nm) is merely computational, depending on the
available GPU memory and the desired accuracy. For the telomere samples, the experimental ground truth positions were difficult
to estimate precisely (see section 12), therefore we didn’t bother with a smaller voxel-size. On the other hand, for the mitochondria
sample we expected to recover the hollow tubular structures of the mitochondria, therefore we choose the minimal voxel-size that will
still fit the entire model on GPU throughout training.
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Fig. SN2.1. Localization architecture. a The low-resolution 2D input image Iin is first passed through a BN layer to normalize pixel
values. Next, the normalized image Inorm is passed through the fully convolutional architecture where C denotes concatenation
and + denotes element-wise addition. The spatial supports of all convolutional filters are 3× 3. The number of channels is fixed
to 64 in both the multi-scale context aggregation, and the upsampling modules. Then, the number is increased to 80\120 for the
refinement module. The prediction is given by a 1× 1 convolution followed by a HardTanh activation limiting the range to [0, W].
The output 3D high-resolution volume is translated to a list of 3D localizations through simple post-processing. An example pair
of simulated-input and output are presented before and after the architecture respectively. Blue empty spheres denote simulated
positions along the surface of an ellipsoid. Red spheres denote CNN detections. b Feature maps dimensions depicted with [21] to
reflect the operation of each module. Note that in the context aggregation module the spatial support of all convolutional filters is
3× 3, although their receptive field grows exponentially with the dilation rate. Blue square depicts the final receptive field for both
choices of dmax. Scale bars are 3 µm.
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2.2 Optical design CNN
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Fig. SN2.2. Phase mask learning architecture. The low-resolution 2D input image Iin is first passed through a BN layer to normal-
ize pixel values. Next, the normalized image Inorm is passed through the fully convolutional architecture where C denotes concate-
nation and + denotes element-wise addition. The spatial supports of all convolutional filters are 3× 3. The number of channels
is fixed to 64 up until the final prediction where it is reduced to 50. The prediction is given by a 1× 1 convolution followed by a
HardTanh activation limiting the range to [0, W]. The output 3D high-resolution volume is translated to a list of 3D localizations
through simple post-processing. Blue empty spheres denote simulated GT positions. Red spheres denote CNN detections. Scale bar
is 3 µm.

Optimally, the architecture used for learning a phase mask should be the same architecture used for localization. Although,
calculating the gradients with respect to the phase mask involve computing several FFTs in each forward and backward pass through
the net. This added complexity made learning computationally inefficient, and led to inferior results. Hence, to design a phase mask
we introduced several modifications to the architecture (Fig. SN2.2). First, the maximal dilation rate was set to dmax = 1, and the
number of convolutional blocks was increased to imax = 8. The receptive field after this modification is 19× 19. Next, the upsampling
module is eliminated and the lateral dimensions were kept similar to the input CCD image. Finally, the refinement module was also
discarded, keeping only the last prediction block (Fig. SN2.1 red block) with a weighting factor of W = 100 and discretization of
D=50 in z, resulting in an ≈isotropic voxel-size of 110× 110× 100 nm3. The resulting number of trainable parameters in this modified
architecture was only ≈300K.

As was noted in previous work on PSF engineering [2], we empirically observed that it is sufficient to optimize the phase mask with
steps of 100 nm in the axial direction (Fig. SN2.3). Moreover, due to refractive index-mismatch, an axial shift of the emitter position is
not interchangeable with a shift of the focal plane (see section 3.1). In the telomere samples we imaged, the emitters were confined to
a 4 µm axial range, with the lowest being shifted ≈ 1− 3 microns from the coverslip. To account for the axial range shrinkage, we
designed a PSF spanning a larger axial range of [0, 5] µm with the focal plane centered in 2.5 µm. Finally, as we are first to consider
engineering a microscope PSF for high-density localization, we initialized the optimization process with a phase mask implementing
zero modulation, meaning, the standard microscope PSF (Fig. 1b main text).

Importantly, in contrast to previous works designing phase masks [1, 2, 22–24], we do not constrain our design space to be spanned
by a fixed set of polynomials (e.g. Gauss-Laguerre modes [1], Zernike modes [2, 23, 24] or concentric rings [22]). Instead, we optimize
the phase at each one of the phase mask pixels separately, since this is a much richer class of hypothesis as verified by the learned
mask.

Interestingly, learning the phase mask is composed of two main phases; First, the PSF is shaped in the middle 2 µm range around
the focus. Afterwards, once the localization CNN learns to correctly localize emitters in this reduced range, the mask is refined to
prevent signal loss at the edges of the axial range and boost the performance at the remaining 2 µm (see Supplementary Video 4).

Of course, all of the choices above affected the learned phase mask. To study the contribution of the individual choices, we
performed the following numerical experiments:

• We learned the phase mask with the localization architecture to study the effect of the net architecture on the result (Fig. SN2.3).
Both architectures resulted in extremely similar PSFs regardless of the lateral pixel size in the localization architecture. However,
the modified architecture provided denser gradients and distributed the photons more uniformly throughout the axial range.

• We initialized the phase mask to be the Tetrapod mask in order to start from an approximately even distribution of the photons
throughout the axial range, and studied the effect of the axial design range and the localization architecture’s receptive field
controlled by the maximal dilation rate (Fig. SN2.4). We observed two key results in this experiment. First, with a large enough
receptive field (dmax = 16) the phase mask is hardly changed regardless of the axial design range. Second, with a smaller
receptive field (dmax = 4), the resulting PSF had a significantly smaller lateral footprint. This result highlights the importance of
the net receptive field when the PSF is initialized to have a large lateral extent. In contrast, when we start from the standard PSF,
the receptive field in both cases (dmax = 4\16) captures the entire initial PSF, and therefore has negligible effect on the learned
PSF spatial extent. Moreover, the learned phase mask using the axial range [0, 5] resulted in a more uniform distribution of the
photons throughout the PSF, on the expense of a slight increase in the CRLB.

• The maximal dilation rate was set to dmax = 4, the axial design range was set to [0, 5], and the phase mask was initialized to the
double helix (DH) mask [1] (Fig. SN2.5). First, note that the result aligns with the previous experiment emphasizing the fact
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that when the PSF is initialized to have a smaller lateral footprint than the net receptive field, then it is hardly modified. This is
evident in the result, as the PSF is hardly changed in the middle portion of the axial range. More interestingly, the result suggests
that using our method we can extend the DH PSF to a larger axial range of 4 µm by only modifying it at the edges of the axial
range.

Finally, an interesting question arises with respect to the proposed co-design approach. That is, what is the optimal PSF for a single
emitter using our method? To answer this question we constrained the number of emitters in each training example to be 1, and set the
maximal dilation rate to dmax = 16 in order to enable the learned PSF to have a large spatial footprint (Fig. SN2.6). The axial design
range was set to [0, 5], and the phase mask was initialized either to the Tetrapod mask or to zero-modulation.

Not surprisingly, when we initialized with the Tetrapod mask, the net hardly changed the phase mask. On the other hand, when
we initialized with zero-modulation, the resulting phase mask was extremely different from the phase mask we obtained for the high
density case. This time, the net preferred the PSF to have a large spatial extent with "dilated" features in order to ease its localization.
Although, when quantifying the localization results for 10K samples we found the learned PSF to be slightly inferior to the Tetrapod in
axial RMSE (Fig. SN2.6). This is partially due to our localization architecture being suboptimal for single-emitter localization.

To understand the limit of the achievable performance given our localization architecture, we next calculated the theoretical bound
on the RMSE in the lateral and axial dimensions given a voxel-size of

(
∆xy × ∆xy × ∆z

)
. Assuming emitters are uniformly distributed

in each voxel, we can calculate the mean squared error from the middle of the voxel which is the optimal recovered position by the net:

MSExy = E(X,Y)∼U([0,∆xy]×[0,∆xy])

[(
x−

∆xy

2

)2
+

(
y−

∆xy

2

)2
]
=

∆2
xy

6

MSEz = EZ∼U (0,∆z)

[(
z− ∆z

2

)2
]
=

∆2
z

36
(S2)

Substituting our recovery voxel-size of (27.5× 27.5× 50) nm3 we get the following lower bounds:

RMSExy =

√
∆2

xy

6
≈ 11 nm

RMSEz =

√
∆2

z
36
≈ 17 nm (S3)

Therefore, with the Tetrapod PSF, we are reaching the limit of the achievable precision with our architecture (Fig. SN2.6), and the
PSF cannot be improved any further for the single-emitter case. On the other hand, starting from zero-modulation we still have some
room for improvement, most likely due to optimization errors. To truly optimize the single emitter case, one needs to consider a
different localization architecture that outputs continuous values, which will be addressed in future work.

Finally, we note that the discussion above regarding the achievable precision disregards our final post-processing step where we
take a local average around the found local maxima. While we found this in practice to improve our axial RMSE by ≈5 nm for all three
PSFs, this step is not part of the learning process, therefore does not help when optimizing the mask for the single-emitter case.
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Fig. SN2.3. Effect of architecture and voxel-size on the learned PSF. We fixed the optimization and the learning hyper-parameters,
set the axial range to [2, 6], and learned the phase mask with the localization architecture. To test the effect of the voxel-size in xy,
we tried 3 different settings: ×4 - the full localization architecture (∆xy = 27.5 nm, ∆z = 50 nm), ×2 - the localization architecture
with only one upsampling layer (∆xy = 55 nm, ∆z = 50 nm), and ×1 - the localization architecture without upsampling (∆xy = 110
nm, ∆z = 50 nm). The learned masks were similar in all 3 cases. Moreover, compared to the learned mask with the modifications
proposed in section 2.2, the resulting PSFs had a lower(better) CRLB (bottom plots) on the expense of faster signal loss at the edges
of the axial range. The CRLB was calculated assuming 30K signal counts with 160 counts per-pixel background. Similarly to [25]
differentiation is done numerically with 1 nm perturbations. Scale bar is 2 µm.
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Fig. SN2.4. Effect of axial design range and the localization net receptive field. The phase mask was initialized using the Tetrapod
model mask (right column), the maximal dilation rate was either dmax = 4 or dmax = 16 corresponding to a receptive field of either
65× 65 or 21× 21 pixels, and the axial optimization range was either [0, 5] or [2, 6] µm. The larger receptive field resulted in minor
modifications to the PSF, while the smaller receptive field enforced it to have a smaller lateral footprint. Moreover, designing the
PSF using the larger and lower axial range ([0, 5] µm resulted in a more even distribution of photons on the expense of a slightly
increased CRLB (bottom plots). The CRLB was calculated assuming 30K signal counts with 160 counts per-pixel background. Simi-
larly to [25] differentiation is done numerically with 1 nm perturbations. Scale bar is 2 µm.
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Fig. SN2.5. Double helix initialization to extend the PSF axial range. The phase mask was initialized using three different options:
(1) Zero-modulation mask, (2) Tetrapod mask, and (3) Double helix mask (right column). The maximal dilation rate was dmax = 4,
and the axial design range was ([0, 5] µm. Interestingly, the net did not modify the double helix PSF in its working range, and only
modified it at the edges to capture the full 4 µms. Although compared to the PSF learned with an initial zero-modulation/Tetrapod
mask, the double helix initialized PSF was larger, making it potentially harder to localize at extremely high densities. The CRLB
(bottom plots) was calculated assuming 30K signal counts with 160 counts per-pixel background. Similarly to [25] differentiation is
done numerically with 1 nm perturbations. Scale bar is 2 µm.
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Fig. SN2.6. Single emitter phase mask learning. The number of emitters per FOV was dropped to 1. The phase mask was initial-
ized to either blank/zero-modulation, or to the Tetrapod mask. The maximal dilation rate was dmax = 16, and the axial design
range was ([0, 5] µm. The learned PSF for the zero-modulation mask had "dilated" features, while the Tetrapod PSF was hardly
changed. Compared to the initial Tetrapod mask, the PSF learned for the blank initilization had slightly worse performance in axial
RMSE, most likely due to optimization errors. The CRLB (bottom plots) was calculated assuming 30K signal counts with 160 counts
per-pixel background. Similarly to [25] differentiation is done numerically with 1 nm perturbations. Scale bar is 2 µm.
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3 Physical layer

3.1 Imaging model
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Fig. SN3.1. Imaging model. The light emitted from a fluorescent microscopic particle with distance z0 from the coverslip propa-
gates through the suspension medium (refractive index of water n2 ≈ 1.334) with an angle of θ2, and refraction occurs at the inter-
face between the medium and the coverslip. The refracted light propagates in glass/immersion oil (refractive index of n1 ≈ 1.517)
with an angle θ1 and is collected by the objective which is focused at fnom.

The imaging model used in this work is based on the scalar diffraction approximation of light emitted from an isotropic fluorescent
emitter [26]. The optical setup is a 4f-extended microscope with a phase mask implemented by an SLM in the back-focal plane (Fig.
SN3.1; reproduced from the main text with additional details for convenience). We assume the emitter is suspended in a medium
with a refractive index close to that of water n2 ≈ 1.334, and is imaged using an oil-immersed objective with a refractive index of
n1 ≈ 1.517 matching the glass of the coverslip. Under these assumptions, the PSF in image plane Ir (u, v) due to a point source located
at r = (x0, y0, z0) is given by:

Ir (u, v) ∝ |F2D (Er (ρ, φ))|2 (S4)

Where Er (ρ, φ) is the electric field at the back focal plane (BFP), and F2D denote the two-dimensional Fourier transform.
Using Abbe sine rule, the physical dimension of the limiting radius at the BFP due to our 4f-system extension is given by:

rphys =
f4 f NA√

A2
M −NA2

(S5)

Where f4 f is the focal length of each lens in the 4f system, NA is the numerical aperture of the objective, and AM is the magnification
of the microscope. For convenience, we define two sets of coordinates in the BFP: cartesian (ζ, η), and polar (ρ, φ). The polar
coordinates are normalized such that ρ = 1 at the limiting aperture given by NA

n1
. As for the cartesian coordinates, they are given by:

ζ = rphysρcos (φ)

η = rphysρsin (φ) (S6)

The intensity of light is assumed to be uniform within the aperture:

circ (ρ) =

{
1 ρ ≤ 1
0 otherwise

(S7)

Next, let us derive the terms comprising the phase of Er (ρ, φ). First, the phase induced by the phase mask M deployed on the SLM
is simply given by the mask itself:

Φmask = M (S8)

Let λ denote the emission wavelength, k1 = 2πn1
λ denote the wave-number of the electrical in oil, k2 = 2πn2

λ denote the wave-
number of the electrical field in water, and fnom denote the nominal focal plane. For a point source located above a water-oil interface
(Fig. SN3.1) the axial phase is comprised of two parts; First, the axial phase accumulated in water (suspension-medium) due to the
emitter distance from the coverslip z0:
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Φax2 = z0k2 cos θ2 (S9)

Second, the axial phase accumulated in oil due to the focus setting ( fnom) which is independent of the emitter position:

Φax1 =
(

fobj − fnom

)
k1 cos θ1 (S10)

Where fobj is the objective focal length. To explicitly calculate the terms in equations (S9) and (S10), we write Snell’s law on the

interface: n1 sin θ1 = n2 sin θ2, and use the trigonometric relation cos θ =
√

1− sin2 θ. The resulting axial phases are given by:

Φax1 = − fnomk1

√
1− ρ2

Φax2 = z0k2

√
1−

(
n1
n2

ρ

)2
(S11)

Where fobj was dropped since it is already corrected for by the objective. Finally, the lateral shift of the point source (x0, y0) is
modelled using a linear phase:

Φlat = 2π

(
x0

ζAM
λ f4 f

+ y0
ηAM
λ f4 f

)
(S12)

Hence, put equations (S8), (S11), and (S12) together we get the following imaging model:

Ir (u, v) ∝
∣∣∣F2D

(
circ (ρ) ej(Φmask+Φax2+Φax1+Φlat)

)∣∣∣2
∝

∣∣∣∣∣∣∣F2D

circ (ρ) e
j

(
M+z0k2

√
1−
(

n1
n2

ρ
)2
− fnomk1

√
1−ρ2+2π

(
x0

ζAM
λ f4 f

+y0
ηAM
λ f4 f

))
∣∣∣∣∣∣∣
2

(S13)

To achieve an exact equality the resulting image in equation (S13) needs to be rescaled with the amount of signal photons Nphotons.
In practice, experimental data appears slightly blurred compared to equation (S13) due to finite emitter size and aberrations not
captured by the model [27]. To remedy this, we blur the result of equation (S13) with a small Gaussian filter.

Note that we do not account for dipole effects [25] and instead assume isotropic emission. Moreover, the model disregards the
super-critical angle fluorescence (SAF) component which is observed when imaging in small axial ranges (< 1 µm) from the coverslip
[25, 28]. Finally, we also neglected the intensity apodization factor at the BFP [29]. Nonetheless, since the model was able to describe
our experimental data with satisfying accuracy, we made these simplifications to reduce complexity and accelerate our computations.

In contrast to an interpolation-based approach [4, 30, 31], a pupil function approach (equation (S13)) combined with a phase
retrieval procedure [32] is able to accurately model emitters that are distant from the coverslip (> µm), potentially alleviating the need
for a depth-dependent calibration [33].

3.2 Poisson noise approximation

An accurate noise model for an EMCCD camera [4, 34] takes into account three major sources of stochastic noise: shot noise produced
by the fluorescence background and signal, Gaussian read out noise produced by the electronics, and electron multiplication noise
introduced by the gain process. Our measurements of fixed cells were taken with an sCMOS camera [35] so we did not include the
electron multiplication noise. Additionally, for live MEF cells the gain noise was well approximated by a Gaussian. Therefore, in our
simulations we assumed a gain of 1, and photons were equivalent to counts. Assuming we are operating in high photon counts (with
no saturation), the readout noise is negligible and the dominant noise source is the Poisson shot noise. In this case, by the law of large
numbers, we can approximate the Poisson noise by a Gaussian noise using the central limit theorem:

y ≈ Poiss (λ = Imodel + b)

≈ N
(

µ = Imodel + b, σ2 = Imodel + b
)

(S14)

Where Imodel , b are the noiseless model image and the additive background respectively. To enable differentiability of the noise
sampling operation, we apply the reparametrization trick [36], and implement the Gaussian noise approximation as:

y ≈ Imodel + b +
√

Imodel + b× ε, where ε ∼ N (0, 1) (S15)

In the backward pass, the standard noise realization ε act as a constant, and hence the overall operator is differentiable:

∂y
∂Imodel

= 1 +
1

2
√

Imodel + b
× ε (S16)
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Fig. SN3.2. Physical simulation layer. The physical simulation layer is essentially the imaging model in equation (S13) viewed as a
computational graph, and parametrized by the phase mask. This layer accepts simulated emitter positions as input, calculates an
image per emitter, and outputs the 2D model image corresponding to the current mask. The emitters are assumed to be spatially
incoherent, hence the output image is given by the incoherent sum of the individual intensity patterns. During training, in each
iteration we randomly sample the number of emitters K, the number of counts per-emitter {Ni}K

i=1, the Gaussian blur per-emitter
{gi}K

i=1, and update the phase mask M via backpropagation. Scale bar is 3 µm.
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Fig. SN3.3. Noise approximation. The mean counts distribution per-pixel is given by the sum of the noiseless model image Imodel
and the non-uniform background b. Assuming Poisson statistics this is also the noise variance. Next, to implement a noise variance
proportional to the mean, the sum image is passed through an element-wise squared root operation, and multiplied element-wise
with a standard Gaussian noise realization. The simualted image on the CCD is modelled by the sum of the mean counts distribu-
tion and the noise approximation term. Scale bar is 3 µm.

13



Of course, our approach is trivially extended with an additive read-out noise realization. In fact, we needed to include this noise
source in the training data for the STORM experiment. On the other hand, the telomeres data was shot-noise limited, hence there we
did not bother with this extension. Note that the background term b is not limited to a constant number of counts per pixel. In fact, to
empirically fit our experimental telomeres data we include a non-uniform background (Fig. SN3.3) modelled by a super-Gaussian
function:

b = A exp
(
−
(

α1(x− x0)
2 + 2α2 (x− x0) (y− y0) + α3(y− y0)

2
)2
)
+ B (S17)

With,

α1 =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

, α2 = − sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

, α3 =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

Where B is a baseline value, A is a normalizing constant, (x0, y0) is the centroid, σx, σy are the on-axis standard deviations, and θ is
the blob angle. On the other hand, for the STORM experiment we got rid of the non-uniform background by simply subtracting the
minimum value per-pixel over the entire acquired stack. This emphasizes an inherent advantage of neural nets over most existing
localization methods: tremendous flexibility to cope with a variety of observed challenges.

3.3 Gradient calculation

To compute the gradient of a scalar real-valued function ` of a complex-valued variable z, we can treat the real and imaginary parts
of z as free variables and compute the gradient of ` with respect to each of them individually. This can be done most conveniently
through the following formalism.

For a scalar real-valued function ` of a complex-valued variable z, the gradient is defined as [37, 38]:

∇` (z) =
∂`

∂ Re(z)
+ j

∂`

∂ Im(z)
(S18)

Moreover, since our graph of mathematical expressions include complex-valued intermediate variables, the usual chain rule cannot
be applied. Instead, for f (z) = u + jv and g (z) = r + js, the gradient of the real-valued function ` with respect to their composition
f ◦ g is computed via the "generalized chain rule" (GCR) [37, 38]:

∇` (g) = Re (∇` ( f ))
(

∂u
∂r

+ j
∂u
∂s

)
+ Im (∇` ( f ))

(
∂v
∂r

+ j
∂v
∂s

)
(S19)

For a thorough and detailed analysis of the complex gradient operator the reader is referred to [39].
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Fig. SN3.4. Single-emitter image generation pipeline. The physical simulation layer graph of operations is composed of K paral-
lel single-emitter image generation pipelines, where the differences between different pipelines are the phase due to the emitter
position Pri , the number of signal counts Ni, and the emitter size accounted for by a Gaussian blur gi. Scale bar is 3 µm.

Next, to optimize the phase mask in the physical layer (Fig. SN3.2), we need to compute the gradient of our real-valued loss
function ` with respect to the phase mask. We will not dwell on the gradients of ` with respect to the CNN parameters as this is taken
care of by the automatic differentiation framework [40]. Instead, we assume we are given the gradient of ` with respect to the physical
layer output which is the noiseless model image Imodel (Fig. SN3.2).

When applying the back-propagation algorithm through a computational graph, a summation is replaced with a fork, and a fork is
replaced with summation. Moreover, note that if we shift the global phase term accounting for phase accumulated in oil into each
"single-emitter image generation pipeline" (Fig. SN3.4), the gradient back-propagated through each such pipeline will admit a similar
expression up to a different position-induced phase term accounting for phase accumulated in water. Hence, for simplicity, we derive
the gradient of a single pipeline while keeping in mind that the final gradient will be given by a summation of gradients over all
pipelines.

Given the gradient of the loss with respect to the emitter final image ∂`
∂Iri

= ∂`
∂Imodel

, the gradient ∂`
∂ Ĩri

is given by:
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∂`

∂ Ĩri

= Ni � gi ~
∂`

∂Iri

(S20)

Where ~ denotes convolution, � denotes a Hadamard product, and gi is not transposed since it is a symmetric Gaussian filter.
Next, applying the definition in equation (S18) to the relation Ĩri = ‖ fi‖2 we get:

∂ Ĩri

∂ fi
=

∂ Ĩri

∂ Re( fi)
+ j× ∂ Ĩri

∂ Im( fi)
=

= 2 Re( fi) + j× 2 Im( fi) = 2 fi

(S21)

Furthermore, since the Discrete Fourier Transform (DFT) is a linear operator its gradient is simply the transformation matrix itself.
During backpropagation, this gradient is conjugated, hence, by DFT unitarity, this corresponds to the application of the inverse
transform [41]:

∂`

∂Pti

= F−1
2D

{
∂`

∂ fi

}
=

= F−1
2D

{
∂`

∂ Ĩri

� ∂ Ĩri

∂ fi

}
=

= F−1
2D

{
Ni � gi ~

∂`

∂Iri

� 2 fi

} (S22)

Let Pni = Pri � Poil denote the combined phase acculumated in water and oil for emitter i. We apply the definition in equation (S19)
to compute the gradient with respect to PMi :

∂`

∂PMi

=Re
(

∂`

∂Pti

)
�
(

∂ Re (Pti )

∂ Re (PMi )
+ j× ∂ Re (Pti )

∂ Im (PMi )

)
+

Im
(

∂`

∂Pti

)
�
(

∂ Im (Pti )

∂ Re (PMi )
+ j× ∂ Im (Pti )

∂ Im (PMi )

) (S23)

Substituting Pti = Pni � PMi in equation (S23) we get:

∂`

∂PMi

=Re
(

∂`

∂Pti

)
� (Re (Pni )− j× Im (Pni )) +

Im
(

∂`

∂Pti

)
� (Im (Pni ) + j× Re (Pni ))

(S24)

Once more, we apply the definition in equation (S19) again to compute the gradient with respect to Mi:

∂`

∂Mi
=Re

(
∂`

∂PMi

)
� (−sin (Mi)) + Im

(
∂`

∂PMi

)
� cos (Mi) (S25)

Note that M is replicated to all pipelines, hence Mi = M, ∀i ∈ {1, ..., K}. Although, we keep the index i to denote the gradient of `
with respect to M back-propagated through pipeline i. Now, recall that a fork in the forward pass of a computational graph is replaced
with summation in the backward pass. Hence, the final gradient with respect to M is the sum of all gradients ∂`

∂Mi
, ∀i ∈ {1, ..., K}. The

steps for calculating ∂`
∂M are summarized in algorithm 1. This gradient was validated numerically using autograd gradcheck function.

Algorithm 1: Calculation of ∂`
∂M

Input : M, {Pni , fi, gi, Ni}K
i=1, ∂`

∂Imodel

Output : ∂`
∂M

for i← 1 to K do
∂`

∂Pti
← F−1

2D

{
Ni � gi ~

∂`
∂Imodel

� 2 fi

}
∂`

∂PMi
← Re

(
∂`

∂Pti

)
� (Re (Pni )− j× Im (Pni )) + Im

(
∂`

∂Pti

)
� (Im (Pni ) + j× Re (Pni ))

∂`
∂Mi
← Re

(
∂`

∂PMi

)
� (−sin (Mi)) + Im

(
∂`

∂PMi

)
� cos (Mi)

end

return ∂`
∂M =

K

∑
i=1

∂`
∂Mi
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4 Training details

4.1 Training set

a b

Fig. SN4.1. Training examples. a The mitchondria training set includes read noise, and signal counts are Gamma distributed. b The
telomeres training set includes a non-uniform background, and is composed of examples with variable emitter size (blur). Both
datasets include variable emitter density and emitter signal-to-noise ratio, with the mitochondria training set (a) having signifi-
cantly lower SNR. Scale bar is 3 µm.

To learn a localization CNN solely with a predefined phase mask, we simulate a training set composed of 10K simulated images
and their corresponding labels which are lists of emitter positions. 9K examples were used for training with 1K examples held out for
validation. Alternatively, to jointly learn the phase mask and the localization CNN parameters, the training set is composed of solely
simulated emitter positions, as the respective images are being changed throughout iterations according to the phase mask.

Given a set of 3D locations, the expected model image is simulated using a pupil function approach as explained in section 3.
Using a pupil function is prefered over image space interpolation methods as it can accurately capture saddle differences of the
PSF. Moreover, from a computational point of view, it is preferred over a convolution followed by a down-sampling approach [4]
since we can simulate emitter locations continuously and more efficiently using FFTs. Importantly, while image-space interpolation
methods employing splines [30, 31, 42] can capture aberrations which are not well described by a combination of Zernike modes [43],
these methods are not suitable for imaging emitters with a large axial shift, as the PSF calibration using beads on a coverslip will not
accurately describe the observed PSF due to refractive index mismatch. Therefore, this flexibility in the pupil-function approach is of
critical when imaging in cells.

To accurately model experimental data in our simulations we followed the approach of [44] to retrieve the aberrated pupil function
for the Tetrapod PSF (see section 11). As for the designed PSF, we observed that the phase retreival algorithm failed to recover a
reasonable aberration, and hence we generated the training set according to the model pupil function. Interestingly, most of the
aberrations in Fourier plane were a result of imperfect implementation of the phase mask on the SLM given a finite set of voltages,
rather than misalignment of the optical system, for example. Hence, since the aberration is mask-specific and expected to behave
similarly as the implemented phase mask, it is reasonable that it was not well expressed as a linear combination of zernike modes.
Although pixel-wise phase retreival algorithms can be deployed (e.g. [45, 46]), the results with the model were already pleasing, and
far better compared to the Tetrapod PSF because of its suitability for high density 3D localization.

To make our simulations more realistic we include experimental variability in our training set. For example, for the telomeres
training sets we add a non-uniform background component that is modelled by a super-Gaussian (see section 3.2) with a randomized

angle in the range
[−π

4 , π
4
]
[rad], randomized standard deviations in the range

[
FOV

5 , 2×FOV
5

]
[px], and randomized amplitudes with

a baseline value in the range [20, 30] [counts], and a maximal value in the range [120, 180] [counts]. Furthermore, we take into account
variations in particle size by convolving each sources’ image with a Gaussian blur of a randomized standard deviation in the range
[0.75, 1.25] [px] (Fig. SN3.2). Moreover, to enforce robustness to a wide range of conditions, the density of the emitters was varied in

the range
[

1
FOV , 35

FOV

] [
emitters

µm2

]
with a field-of-view (FOV) of 13× 13 µm2. Finally, to prevent the net from over-fitting intensity, the

number of signal counts per emitter was varied in the range [9K, 60K] [counts]. Conveniently, the simulated training set can easily
incorporate additional experimental challenges such as motion blur, laser fringes, etc. This flexibility is key to making the method
versatile and readily extendable for different applications.

In fact, for the STORM experiment, we found that the additive non-uniform background was not necessary since subtracting the
minimal value per-pixel of the stack eliminated this issue. However, there we observed a different set of challenges. For instance, while
the mean background was relatively constant throughout the FOV, the standard deviation of the read-noise was still higher in the
middle of the FOV. Therefore, to take this into account we used the same super-Gaussian from before to scale the standard deviation
of the read noise in the range [8, 12] [counts]. In addition, the number of signal counts per-emitter in the STORM experiment was
significantly lower than in the telomere data, and followed a much less uniform distribution. Therefore, to take this into account we
modelled the signal counts in STORM experiment using a Gamma distribution with a shape parameter of k=3 and a scale parameter of
θ = 3000 [counts]. Interestingly, for the STORM experiment, we found it beneficial to alter the GT labels and discard emitters with an
extremely low number of counts (below 6K signal counts). This deliberately introduced "label-noise" allowed us to learn a more robust
recovery net, coping easily with the non-uniform background introduced by dim/out of range emitters throughout the FOV.

Finally, in our implementation the training positions are randomly drawn within the 3D cube of possible locations. To improve the
uniformity of volume coverage, we draw the continuous positions using two consecutive steps; First we discretize the volume to
coarse voxels and randomly choose disjoint indices. Afterwards, each index is added to a random continuous shift within the voxel
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and turned to microns using the coarse voxel-size. Note that all of this happens prior to network training. The boolean grid used
as label in training is given by projecting the continuous positions on the recovery grid (voxel size of either 27.5× 27.5× 33 nm3 or
27.5× 27.5× 50 nm3). Although this strategy was simple and convenient in this work, a smarter training set generation can improve
learning. For example, a biased sampling scheme with more probability to draw positions from the edges of the axial range (see
Supplementary Video 4) can accelerate convergence, and potentially alter the learned mask, although care must be taken to not
introduce artifacts.

4.2 Loss function

In computer vision, approaches for inferring the numerical coordinates of key-points in an input image are crudely divided into two
classes: approaches that try regressing the coordinates directly using fully-connected (FC) layers (e.g. [30, 47]), and approaches that
project the coordinates to the grid using a soft representation (e.g. a heatmap [12, 48]), and afterwards employ representation-matching.
The former suffer from two fundamental drawbacks:

1. FC layers limit the model applicability to specific spatial dimensions which necessitates additional manipulation to handle
images of general dimensions.

2. FC layers lack inherent spatial generalization [49], which is the ability to generalize knowledge attained at one location during
training to another at inference time. This is one of the reasons why augmentation techniques, such as horizontal and axial shifts,
are useful for training classification models.

Moreover, a grid representation avoids the inefficient learning of a non-linear mapping from feature space to emitter positions,
and provides meaningful voxel-wise supervision. Hence, while FC layers can potentially provide more accurate coordinates, they do
not have the generalization ability afforded by spatially shared parameters and are prone to over-fitting [50]. Therefore, we adapt a
discrete representation approach, and project the continuous coordinates to the grid.

Next, two alternative approaches can be considered to tackle the task of localization using a CNN. Namely, one approach is to
think of localization as a binary classification problem where the CNN predicts a binary occupancy volume, such that 0 denotes
an empty/vacant voxel and 1 denotes an occupied voxel containing an emitter. A widely used loss function in this case is the
cross-entropy (CE) loss. Although, even for dense localization, the vacant and occupied voxels are highly imbalanced, with only
few voxels containing emitters. Therefore, the CE loss is usually either weighted [51], replaced with a Focal loss [52], or applied to a
"blobbed" version of the desired boolean volume e.g. by placing a disk around each GT position [53–55]. Afterwards in post-processing,
the CNN prediction is usually thresholded, and the final prediction is given by a centroid/local-maximum operation. Alternatively, a
second approach is to consider a soft version of the binary classification problem and take a regression route. Namely, by placing a
small Gaussian around each GT position (e.g. with std of 1 voxel), we can match continuous heatmaps via an `2 loss [11, 12]. Heatmap
matching usually provides more meaningful gradients and ease the learning process convergence. Here, our loss function ` is a
combination of two terms:

` (y, ŷ) = ‖y ~ g3D − ŷ ~ g3D‖2 + λ

1− 2×

N

∑
i=1

yi ŷi

N

∑
i=1

yi +
N

∑
i=1

ŷi

 (S26)

Where y, ŷ are the ground truth (GT) and the predicted boolean grid respectively, g3D is a 3D Gaussian kernel with a standard
deviation of 1 voxel, λ is a regularization parameter, and N is the number of voxels in the prediction grid.
The first term is a heatmap matching term where we measure the proximity of our prediction to the simulated GT by measuring the `2
distance between their respective heatmaps. As for the second term, it is a measure of overlap which provides a soft approximation
of the true positive rate in the prediction. Note that this measure doesn’t take into account false positives, and hence if optimized
alone will result in a predicted volume of 1s. Although, with our loss function this is not a feasible solution as it is not favored by the
first term. The two terms are weighted with a regularization parameter λ = 1 determined empirically. In addition, we weight voxels
containing emitters with a factor of W = 800 in order to balance out the contributions of vacant and occupied voxels throughout
training. Hence, the CNN output is constrained to be in the range [0, 800]. This strategy makes optimization easier and prevents
gradient clipping.

Note that optimally the second term should be replaced with a soft approximation of the Jaccard loss [56] or dice loss [57, 58] which
are the metrics we are ultimately interested in optimizing. However, although recent results on approximating the Jaccard loss look
promising [59], the high class imbalance between empty and occupied voxels make the optimization process challenging.

To conclude, while the proposed loss function (equation (S26)) led to satisfactory results, more optimized choices could further
improve performance, for example, a multi-scale approach such as [30]. Alternatively, a non static Gaussian kernel that shrinks over
epochs could accelerate convergence. Finally, recent works [49, 60, 61] have suggested bridging the gap between coordinate regression
and heatmap matching via the soft-argmax function. While in their current version these works assume a known fixed number of
key-points and predict a volume per point which is not feasible for localization microscopy, future extensions might prove valuable.
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4.3 Optimization and hyper-parameters

We used the Adam optimizer [62] with the following parameters: lr = 5× 10−3, β1 = 0.9, β2 = 0.999, ε = 10−8. The batch size was 16
for learning a phase mask, and 4 for learning a recovery net (due to GPU memory). We experimented with Group Normalization
(GN) [63] as an alternative to Batch Normalization (BN) [7] for the smaller batch size, but found that BN gave consistently better
results. The learning rate was reduced by a factor of 10 when the loss plateaus for more than 5 epochs, and training was stopped
if no improvement was observed for more than 10 epochs, or alternatively a maximum number of 50 epochs was reached. The

initial weights were sampled from a uniform distribution on the interval
[
−
√

k,
√

k
]

where k = 1
kx×ky×Cin

, with kx, ky the filter spatial
dimensions, and Cin the number of input channels to the convolutional layer. No further regularization was used (e.g. weight decay
[64] or dropout [65]). Training and evaluation were run on a standard workstation equipped with 32 GB of memory, an Intel(R)
Core(TM) i7− 8700, 3.20 GHz CPU, and a NVidia GeForce Titan Xp GPU with 12 GB of video memory. Phase mask learning took ≈ 25
h, and recovery net training took ≈ 35 h. Our code is implemented using the Pytorch framework [40], and is made publicly available
at https://github.com/EliasNehme/DeepSTORM3D.

5 Post-processing

The final list of localizations is given by the 3D Center of Gravity (CoG) estimator applied to local maximas in the prediction volume
that are above a chosen global threshold. While it is possible to use more sophisticated post-processing steps we choose to use this
simple and efficient strategy to keep our method as fast as possible. This is extremely important for 3D STORM experiments covering
large axial ranges, as these normally entail processing a few tens of thousands of frames. To implement our strategy on GPU, we use
the following 4 steps for post-processing:

1. First, the CNN prediction volume is thresholded using the function torch.where, with a global threshold normally in the range
[40, 160]. The appropriate choice of the threshold is dependent on the input image Signal-to-Noise Ratio (SNR) and on the
accuracy of the PSF model. For example, if the input image has a relatively low SNR (e.g. ≈ 9K signal counts with ≈ 150
background counts), or alternatively the training set was generated using the theoretical phase mask rather than a retrieved
pupil function, the optimal threshold is more likely to be 40.

2. Second, we discard predictions that are not local maxima in their 3D vicinity. The number of neighboring voxels in the 3D
vicinity of the peak was chosen such that the 3D radius for peak finding was rpeak = 100 nm for the STORM experiment and
rpeak = 150 nm for the telomere data. To run this step efficiently on GPU, we compare the thresholded prediction volume to the
result of applying the function torch.nn.MaxPool3d with a stride of 1 and a kernel size of 2rpeak in all three axis. Usually, for a
high SNR input image with relatively mild overlaps this step is not necessary. However, This step is crucial for low SNR highly
overlapping images, as often the net tends to predict small 3D "blobs" (3× 3 cube of values), with the maximum being often
in the underlying emitter position. While this step potentially limits the achievable resolution at low SNR, keep in mind that
overlaps in 2D normally translates to non-overlapping "blobs" in 3D. Hence, this is merely a limitation for standard imaging
experiments using a 2D detector.

3. Third, around each found local maxima we calculate a 3D CoG estimator in x, y and z, using the torch.nn.functional.conv3d

function. The network confidence in each of the neighboring voxels is used as its relative weight.

4. Finally, we compile a list of localizations by translating the output of the CoG estimator to µms according to the recovery voxel-
size (which is either (27.5× 27.5× 33) nm3 for mitochondria, (27.5× 27.5× 50) nm3 for fixed telomeres, or (40× 40× 50) nm3

for live telomeres).

Next, let us discuss the effect of both the threshold T in step 1, and the peak finding radius rpeak in step 2. The effect of the threshold
is quite straighforward (Fig. SN5.1a). The higher the threshold, the higher the net confidence in its prediction. This means we will
improve the localization precision on the expense of detecting less emitters. On the other hand, if the threshold is too low we will
detect more false positives, which will ultimately result in a lower jaccard. The sweet spot between the two extremes was T = 40 for
the mitochondria sample, and T = 160 for the telomere sample. The result for scanning the threshold in the mitochondria conditions
was omitted for brevity as it was similar in both cases. Of course, the optimal threshold is dependent on the density as well, but since
the latter is not known beforehand, we choose to keep our method as simple as possible and used a global threshold regardless of the
density.

As for the peak finding radius, its role is to group nearby localizations and thereby lower the amount of false positives. A very
big radius will throw away true positives, and therefore lower the jaccard index (Fig. SN5.1b,c left panel). On the other hand, a very
small radius will result in a large amount of false positives, and thereby still lower the jaccard index. As for the localization precision,
the size of the radius will affect the CoG estimator employed in step 3. This will have a different effect depending on the SNR (Fig.
SN5.1b,c middle and right panels). At high SNR, a radius of rpeak ∈ [2∆i, 5∆i] voxels improves the axial localization precision by ≈10
nm. On the other hand, for lower SNR this step decreases the axial localization precision by ≈8 nm as it might average nearby true
positives axially. Although, we saw its necessary to prevent a high number of false positives in STORM experiments.

Finally, the results illustrated in Fig. SN5.1 are for networks trained with the Tetrapod PSF, although the effects are similar for other
PSFs, and therefore omitted for brevity.
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Fig. SN5.1. Post-processing parameters. a Jaccard index and lateral \axial RMSE as function of the global threshold T at high SNR.
The peak finding radius was fixed to 4 voxels, and the SNR conditions were similar to the telomere experiment.b Jaccard index and
lateral \axial RMSE as function of the peak finding radius rpeak at high SNR. The radius is reported in voxels, and is translated to
nm according to the respective voxel side (∆xy = 27.5 nm, ∆z = 50 nm). The threshold was fixed to T=160, and the SNR conditions
were similar to the telomere experiment. c Jaccard index and lateral \axial RMSE as function of the peak finding radius rpeak at low
SNR. The radius is reported in voxels, and is translated to nm according to the respective voxel side (∆xy = 27.5 nm, ∆z = 33 nm).
The threhsold was fixed to T=40, and the SNR conditions were similar to the STORM experiment.
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6 Assesment metrics

To compare localizations directly, we first need to solve the assignment problem [66], meaning, we need to match each recovered

position
(

xrec
i , yrec

i , zrec
i
)
to a nearby ground truth (GT) position

(
xgt

j , ygt
j , zgt

j

)
such that the overall euclidean distance between matched

points is minimized. The matching was computed using the Hungarian algorithm [66] with a threshold distance of 150 nm to rule out
False Positives (FP). Recovered points that were matched to a GT point were regarded as True Positives (TP). And finally, GT points
that were not matched were regarded as False Negatives (FN). Next, following [4] we computed three standard metrics to compare
two sets of points:

a. Jaccard Index (JI) defined as:

JI =
TP

TP + FP + FN
(S27)

This metric measures the fraction of correctly identified points in a dataset. A Jaccard index of 1.0 means perfect detection
without spurious FPs. It is particularely important for localization techniques to detect a large fraction of the molecules in each
frame, as this ultimately dictates the amount of needed frames (e.g. for super-resolution imaging) or more extremely the amount
of needed experiment repetitions (e.g. for extracting the diffusion coefficient from single particle tracking trajectories).

b. Root Mean Squared Error (RMSE) in both the lateral (xy) and the axial (z) dimensions defined as:

Lateral RMSE =

√√√√ 1
TP ∑

i∈STP

(
xrec

m(i) − xgt
i

)2
+
(

yrec
m(i) − ygt

i

)2
(S28)

Axial RMSE =

√√√√ 1
TP ∑

i∈STP

(
zrec

m(i) − zgt
i

)2
(S29)

Where m (i) is the index of the recovery point matched to GT point i, and STP is the set of matched GT points. These two metrics
quantify the precision the localization algorithm, and ultimately determine the achievable resolution. In contrast to the Jaccard
index, the RMSE is computed only for TPs and lower is better. Moreover, the lowest achievable precision for an unbiased
localization algorithm is bounded by the Cramer-Rao Lower Bound [67].

Although it is possible to define a metric unifying equations (S27), (S28), and (S29) to a single number including also the software
runtime [4], throughout this paper we report all 3 metrics separately for convenience.

7 Modified matching pursuit

The approach presented below was first described in the supplementary information of [3], and is closely related to [31, 68–70]. Before
we go into details, let us first describe the Maximum Likelihood Estimator (MLE) for fitting single emitters which this method builds
upon.

7.1 Maximum likelihood estimation

MLE is a technique for estimating the parameters of a statistical model based on a set of experimental observations, assuming we
know the underlying noise model [67]. Specifically, given the imaging model PSF I (equation (S13)), the Poisson noise model (equation
(S14)), a measured PSF of a single emitter y, assuming i.i.d. pixel measurements the likelihood function L is given by [71]:

L (Θ; y) =
M

∏
i=1

Ii (Θ)yi e−Ii

yi!
(S30)

Where Θ = (x0, y0, z0, N, b) is the unknown emitter 3D position and local SNR, and M is the number of measured pixels. Therefore,
the ML estimator is given by:

Θ̂ = argmin
Θ

(−log (L (Θ; y))) (S31)

= argmin
Θ

M

∑
i=1

Ii − yi ln (Ii) (S32)

Where the likelihood maximization problem is exchanged with the equivalent negative log-likelihood minimization problem, and
the latter is solved conveniently via MATLAB’s fmincon routine. This approach is known to achieve results close to the theoretical
limit also known as Cramer-Rao Lower Bound (CRLB) [67], and is considered the gold standard for single emitter fitting [71], with
available efficient implementations utilizing GPU acceleration [27, 33, 42]. However, for multi-emitter fitting, and specifically for the
case of z-dependent PSFs, this approach becomes computationally prohibitive, and alternative approaches need to be explored. An
example family of well-performing methods [31, 68–70] are approaches based on "sequential-fitting" as described next.
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7.2 Continuous matching pursuit

Matching Pursuit (MP) is a method that relies on a sequential fit-and-subtract routine commonly used for sparse signal recovery
[72]. Usually, MP is discussed in a discrete setting with a fixed number of possible "atoms" (e.g. PSFs) that can be combined to
comprise the measured field-of-view (FOV). Here, we apply a continuous variant of MP, enabled because our dictionary is given by a
continuous generative model of the PSF (equation (S13)). The basic idea is to decouple the multi-emitter fitting problem into sequential
single-emitter fitting sub-problems, where in each iteration we fit the emitter that is most correlated with the residual. Next, the fit
result is subtracted and the residual is updated. This process is iterated till a convergence criterion is met.

More formally, first, we start by creating a coarse dictionary D with atoms ak comprised of the model PSF Ir (equation (S13))
sampled at rk = (x0 = 0, y0 = 0, z0 = k∆z), with ∆z = 200 nm, k ∈ {0, ..., 20}. The atoms are normalized to have a unit `2 norm:
anorm

k = ak
‖ak‖

. Second, we set the residual R to be the measured image y normalized to have a unit `2 norm: R =
y
‖y‖ . Next, we

initialize the set of recovered locations S, and in each iteration we repeat the following steps:

1. Calculate the normalized correlation volume with the residual defined as:

Ncorr [m, n, k] = R [m, n]~ anorm
k [−m,−n] ∀k ∈ {0, ..., 20} (S33)

2. Find the maximally correlated PSF from the dictionary in the coarse 3D grid:(
m̂, n̂, k̂

)
= argmax

m,n,k
Ncorr [m, n, k] (S34)

3. Crop a fixed region from the residual R around the coarse localization from the previous step:

Rc = R
[
m̂− ∆xy : m̂ + ∆xy, n̂− ∆xy : n̂ + ∆xy

]
with ∆xy = 25 [px] (S35)

4. Fit the cropped residual Rc using MLE (equation (S32)) initialized with
(

m̂, n̂, k̂
)

to refine the emitter 3D position and estimate
the signal and background counts:

Θ̂ =
(

x̂0, ŷ0, ẑ0, N̂, b̂
)
= argmin

Θ
(−log (L (Θ; Rc))) (S36)

5. Update the set of recovered emitter positions:

S = S ∪ (x̂0, ŷ0, ẑ0) (S37)

6. Calculate the emitter model image Iemitter using equation (S13) with the estimated parameters Θ̂:

Iemitter = N̂ ×
Ir̂=(x̂0,ŷ0,ẑ0) [m, n]

∑
m

∑
n

Ir̂ [m, n]
+ b̂ (S38)

7. Subtract Iemitter to update the residual for further fitting:

R = R− Iemitter (S39)

Convergence is achieved when either the mean residual drops below a threshold (e.g. mean background per-pixel), or the overall
estimate IS correlation with the measured image plateaus.

Note first that the run-time and amount of computations grow linearly with the number of emitters in the field-of-view. Hence, the
approach is extremely inefficient for dense fields of overlapping emitters. Second, the strategy taken in step 4 is sub-optimal since
the images of overlapping emitters are not explained well by single-emitter fitting. One famous extension of MP is the Orthogonal
Matching Pursuit (OMP) method [73] where in each iteration all accumulated emitters in the set S are re-fitted. In our case this
approach is computationally prohibitive, and is not trivially implemented using MATLAB’s fmincon. Finally, note that for a measured
image with a single-emitter, the approach above reduces to single-emitter fitting with MLE, and hence is more accurate than our CNN
which is limited by the resolution of the output grid (first data point in Fig. 2a main text). This is because our method was tailored to
handle high emitter densities by bounding the precision for the single-emitter case. Although, as shown by recent works [44, 74],
CNNs designed specifically for single-emitter fitting can achieve precision comparable to that of MLE. Hence, a cascaded approach
combining our method with one of [44, 74] could be considered for further accuracy improvement.
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7.3 Comparison at low SNR
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Fig. SN7.2. Comparison to MP at low SNR. a The trained CNN is superior to the matching pursuit approach in both detectability
(Jaccard index) and in precision (Lateral\Axial RMSE). Matching of points was computed with a threshold distance of 150 nm
using the Hungarian algorithm [66]. Each data point is an average of n = 100 simulated images. Average standard deviation in
Jaccard index was ≈ 7% for both methods, and average standard deviation in precision was ≈ 7 nm for the CNN, and ≈ 18 nm for
MP. The SNR conditions were set similar to the STORM experiment, i.e. 9K signal counts, 20 counts per-pixel Poisson background,
and a read noise with a standard deviation of 10 counts.
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8 EPFL 3D challenge

8.1 DH high density modality

To put DeepSTORM3D into context with the plethora of existing high density methods, we applied it to the DH high density modality
from the EPFL 3D challenge [4].

To train a localization net, first we needed to recover the phase mask representing the observed experimental DH PSF provided
in the calibration bead-stack. To this end, we used the VIPR [46] phase retrieval method. Afterwards, the training examples were
generated with a similar SNR and emitter density to the corresponding EPFL test set.

The entire axial range in this competition was ≈1.5 µm. To achieve maximal accuracy in z, we trained the models to output a grid
of D = 100 channels in z, corresponding to an axial voxel-size of ∆z = 15 nm. The lateral voxel-size was ∆xy = 100nm

4 = 25 nm. The
maximal dilation rate was dmax = 4 according to the DH lateral footprint, and the post-processing parameters were set to T=40 and
rpeak = 4 voxels following a similar analysis as in section 5. In addition, prior to localization by the net, we subtracted the minimum
value per pixel across the entire test stack to get rid of the non-uniform auto-fluorescence background component.

As for the training locations, we experimented with two different sampling schemes:

• Similarly to the rest of this work, we sampled the training locations uniformly at random in 3D. We used 9K images for training,
and 1K images for validation.

• We used the training locations of the matching training set on the EPFL website. These locations were positioned along lines
(simulated microtubules), and had a very similar clustering in space to the test set. To create a large enough training set, we
augmented these positions by a factor of 4, using rotations in xy and flipping/scaling in z. The resulting image library was
composed of 10K images with their corresponding emitter positions. These were then split to 9K images for training and 1K
images for validation.

The test set was composed of 3125 frames of a 6.4× 6.4 µm2 FOV, and was analyzed in ≈2 mins. In the random sampling case
(Fig. SN8.1a) we managed to recover 14,168 emitters, whereas when we trained on emitters positioned along lines (Fig. SN8.1b)
we were able to recover 18,347 emitters. Naturally, the reconstruction was more continuous (Fig. SN8.1b inset (i)), and crisper (Fig.
SN8.1b insets (ii)-(iii)) when training on lines. However, this result needs to be considered with caution. While for the purpose of
the competition this model will outperform the model trained on emitters positioned randomly in space, keep in mind that it was
implicitly trained on the structure, and is therefore not expected to generalize well when tested on different structures. Nonetheless, it
is worth mentioning that we did not optimize the sampling scheme for the training locations in this work, and the performance can be
potentially boosted by sampling emitters that are randomly clustered in space.

Note that here we showed the results for the challenge data matching the SNR conditions encountered with Alexa647 (MT2N1HD).
However, our submission also includes the results for SNR conditions matching mEos2/Dendra2 (MT4N2HD) and will be available on-
line at the EPFL website: http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results, where it can be compared interactively
with all other participants.

(i)

a b
μm0.65

μm-0.65

XY YZ

XZ

Random Lines

(ii)

(iii)

(i) (ii)

(iii)

Fig. SN8.1. DH high density challenge. a Reconstructed test set when training with random emitters in space. b Reconstructed
test set when training with emitters positioned along lines. In both cases, the 3D histogram is rendered with an isotropic 10 nm
grid, and blurred with a gaussian with a standard deviation of 15 nm. The YZ and XZ projections are plotted in grayscale for conve-
nience. Scale bar is 2 µm.
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8.2 Comparison to SMAP-2018

We compared the Tetrapod-trained CNN to SMAP-2018 [42], which is a leading single-emitter fitting method that was also successful
in localizing high-density of emitters [4].

To use SMAP-2018, we started by calibrating the spline coefficients in order to model the PSF. For this purpose, we simulated an
axial stack of a bead PSF covering a 4 µm range with 10 nm steps. The calibration parameters used were the following: ROI size =
41 [px], distance between axial slices = 10 nm, no cross-correlation between slices to for alignment, filter size for peak finding = 8,
relative cutoff = 1, smoothing factor = 1. Next, we used the calibrated spline model to localize emitters. For peak finding we used the
maximal intensity projection PSF probed at the axial slice z = 35, with no additional smoothing (s = 0). The detection cutoff was set to
the absolute (photons) mode with 24 photons, using the maximum criterion. Moreover, we used a rectangular ROI for fitting with
35 [px] sides. MLE fitting was done using the spline model coefficients with 60 iterations of the Levenberg–Marquardt algorithm
per emitter. Moreover, for each emitter we initialized the fit with three different starting points in z (z0 = [−1, 0, 1] µm) and chose
the solution with the maximum likelihood. Furthermore, we did not exclude the rim of the field-of-view (FOV) since some of the
PSFs were touching the sides. To reject false positives and keep only precise localizations, we used the following filtering settings:

xy-locprec = 100 nm, relative Log-likelihood = 2, iter < maxiter, and
∣∣∣x f it − xpeak f ind

∣∣∣ < 3. Finally, one particularly useful filtering
setting was the recovered photon number. We used a threshold of 24500 photons for the high SNR case (Fig. SN8.2a) and 4500 for the
low SNR case (Fig. SN8.2b).

Note that in the low SNR case we could not get SMAP-2018 to recover all emitters even in the single emitter case (Fig. SN8.2b left
panel). Although we tried different thresholds and peak finding settings (e.g. non-maximum suppression), no single setting was able
to recover all emitters without introducing additional false positives and decreasing the jaccard index.

Nonetheless, SMAP-2018 is an excellent single-emitter fitting method. Here its performance was worse than MP since it was not
designed to handle emitter overlaps, or PSFs with a varying lateral footprint in the axial dimension. Hence, SMAP being one of the
leading software in dense 3D localization for other PSFs [4] highlights the importance of the method presented in this work.
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Fig. SN8.2. Comparison to SMAP-2018. a Jaccard index and RMSE comparison between a trained CNN (black) and SMAP-2018
(blue) at high SNR matching the telomere experiment. b Jaccard index and RMSE comparison between a trained CNN (black) and
SMAP-2018 (blue) at low SNR conditions matching the STORM experiment. As expected, the trained CNN is superior to SMAP-
2018 in both detectability (Jaccard index) and in accuracy (Lateral \Axial RMSE) at both high (a) and low (b) SNR. Matching of
points was computed with a threshold distance of 150 nm using the Hungarian algorithm [66].
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9 STORM imaging

9.1 Phase mask fabrication

For STORM imaging, the phase mask (PM) was fabricated in fused silica substrate through three iterations of photolithography, with
Reactive Ion Etching(RIE) following each step. Chrome-Soda-lime masks were fabricated by a Direct Write Laser Lithography system
(Heidelberg DWL66+). The fused silica substrate was coated with positive photoresist Az1518 and baked for 2 minutes at 90o C, with
final thickness of 2.3 µm. The Karl Suss MA-6 was used as an exposure tool, with an exposure dose of 28 mJ

cm2 UV light. Three hard
mask patterns are prepared, one for each etching step. Next, the wafer was developed in TMAH: DI solution (concentration of 2.25%)
for 55 seconds, then rinsed with DI water. After achieving the desired resist pattern, the fussed silica wafer was etched by CHF3
plasma using a Plasma-Therm 790 RIE. Three steps of photolithography and etching to 140 nm, 280 nm and 560 nm resulted in 8
different heights from 0 to 980 nm, in steps of 140 nm.

Dry etching - RIE

Quartz wafer

Plasma

Photoresist

0 0.5 1

Photoresist

UV source

UV mask

Quartz wafer

Photolitographya b c

x0.14  [μm] x0.28  [μm] x0.56  [μm]

+

Fig. SN9.1. Phase mask fabrication. a In the photolitography step (top), a wafer coated with photoresist is illuminated through a
hard UV mask. Afterwards, in the dry etching step (bottom), the wafer is etched according to the photoresist pattern. b The three
UV masks used to generate the 3 corresponding height maps: 140 nm, 280 nm, 560 nm. Since the masks are stacked, the final mask
includes 8 different heights, with steps of 140 nm (top). Zoom-in is an experimental measurement of the physical mask using a
standard microscope (middle). Scale bar is 0.5 mm. c Measured z-stack of a bead on the coverslip with the physical mask. Scale bar
is 2µm.
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9.2 Density limit with Tetrapods

In order to test the performance limits of DeepSTORM3D with respect to the experimental density, we digitally summed consequential
frames from the mitochondria experiment (Fig. 3 main text and Supplementary Videos 1-3). To create a data 2 times denser we
summed frames 1 and 2, and then frames 3 and 4 etc. Similarly we summed each 4 and 8 consequential frames with no-overlaps to
generate a data 4 and 8 times denser (Fig. SN9.2). The resulting number of frames in each dataset was 10K, 5K, and 2.5K respectively,
corresponding to reconstruction times of ≈1h 40 mins, ≈45 mins, and ≈23 mins. The recovered number of localizations was ≈360K,
≈220K, and ≈90K respectively.

Note that DeepsTORM3D was able to recover the same number of localizations using frames sum (only ≈200 fewer emitters).
Moreover, the summation actually improved the reconstruction at the right lower edge of the FOV (Fig. SN9.3a), where the counts
of the same emitters across two consequential frames were summed to increase the effective SNR. In addition, note that this result
was achieved within ≈1h 40 mins which is actually faster than the corresponding single-emitter method in ZOLA [33] that utilizes
distributed MLE fitting on GPU.

As for the higher densities, the resolution seems to start deteriorating in the x4 case (Fig. SN9.3b), although relatively gracefully.
While further extensions of DeepSTORM3D that explicitly account for the temporal dimension might bridge the gap to x4 denser
samples, the x8 density (Fig. SN9.3c) seems much harder to achieve using the Tetrapod PSF.

In terms of acquisition time, while our exposure time in the actual experiment was 30 ms per-frame, in principle, the laser power
can be amped up to blink the desired amount of emitters within 30 ms. Hence, this means the artificially constructed denser datasets
(Fig. SN9.2) can be acquired within 5 mins, 2.5 mins, and 1.25 mins.

To put things in perspective with the current stat-of-the-art, methods achieving similar results relying on single-emitter Tetrapod
fitting [33] require at least an ≈ ×5 longer acquisition time. Similarly, methods that combine the astigmatism PSF with axial scanning
(e.g. [74]) would require ≈180K frames to cover a 4 µm axial range, resulting in ≈ ×4 longer acquisition even with a 14 ms exposure
time. Finally, not only these numbers are conservative in favor of the methods mentioned above, but they are also calculated compared
to analyzing the raw experimental frames, prior to summation. If we further compare them to the ×2 denser dataset (Fig. SN9.3a), we
get a speedup factor of ×10 and ×8 respectively, manifesting the unprecedented acceleration afforded by DeepSTORM3D.

a

b
Experimental

Overlay

x2 density x4 density x8 density

Fig. SN9.2. Increased experimental density. a Resulting frames from summing 2 (left), 4 (middle), and 8 (right) consequential
experimental frames. b rendered frames from the corresponding 3D recovered positions by the CNN overlaid on top. Scale bar is 5
µm.
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9.3 Resolution analysis

To estimate the resolution of our reconstructed super-resolved image, we simulated images with similar SNR using the retreived

phase mask (Fig. SN9.4). The density of the emitters was varied in the range
[

1
FOV , 35

FOV

] [
emitters

µm2

]
with a field-of-view (FOV) of

13× 13 µm2. To estimate the experimental density we used the number of localizations recovered by the CNN with a low threshold of

T = 10. The resulting density was ≈0.1
[

emitters
µm2

]
which means the expected resolution is ≈37 nm in xy and ≈50 nm in z.

The lateral resolution was also estimated directly from the mitochondria reconstruction using a recently published parameter-free
method [75], and was found to be in great agreement with our simulation up to a single nanometer (Fig. SN9.4d), validating the
accuracy of our resolution estimation.

To compare the result to the single emitter case we calculated the CRLB for a mean signal of 9000
[ counts

emitter
]
, and a mean background

of 140
[

counts
pixel

]
. The result suggests that we achieve a factor of ≈2 relative to the CRLB in precision due to the combination of high

density with a low SNR.
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10 Learned PSF analysis

10.1 Comparison to popular PSFs

The SNR conditions at which we learned the PSF were similar to the telomere experiment. Therefore, to put our learned PSF into
context with respect to existing PSFs, we compared its performance against CNNs trained to localize the standard PSF, the DH PSF, the
DH PSF after optimization using our method to extend its range to 4 µm (Fig. SN2.5), and the Tetrapod PSF. In accordance with each
PSF lateral footprint, the maximal dilation rate dmax was set to 4, 4, 4, and 16 respectively. The comparison included a density scan

with a fixed SNR (Fig. SN10.1a), and a SNR scan with a fixed density of 0.124
[

emitters
µm2

]
(Fig. SN10.1b).

The results suggest that in the telomere SNR conditions our learned PSF (orange) outperforms all other PSFs, especially at high
density (Fig. SN10.1a). Moreover, this conclusion in maintained across the entire range of signal counts ([10K, 60K] this PSF was
designed for (Fig. SN10.1b), however for lower signal counts (first 2 data points in Fig. SN10.1b), the axial localization precision is ≈10
nm worse than the Tetrapod and the DH PSF. For the optimization of this PSF to lower conditions see section 10.5.
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10.2 Implementation ease

Our system is composed of two main components: a 4f optical system, and a phase mask. Extending the image plane using a 4f
optical system (Fig. 1a main text and Fig. SN3.1) is a relatively simple task, and has been explored thoroughly over the last decade [25,
27, 33, 76, 77]. As for the phase mask implementation, at first glance, our learned phase mask may seem challenging to implement
as it contains a lot of phase jumps that are potentially challenging to achieve using commercial Spatial Light Modulators (SLMs).
However, if we unwrap the phase (Fig. SN10.2) we get a discrete spiral with ≈3 main different values. Hence, implementing our PSF
is straightforward with commercially available LC-SLMs.

-

UnwrappedLearned

Fig. SN10.2. Learned mask unwrappig. The learned mask (left) can be unwrapped to a spiral with only ≈3 discrete values (right).

10.3 Sensitivity to lateral overlap

The learned PSF had a smaller lateral footprint compared to the Tetrapod PSF. This trait is extremely useful at high densities as it
minimizes the probability of lateral overlap. However, a natural question in this case is whether this PSF is more vulnerable to lateral
overlap, as smaller features are easier to confuse. To test this, we simulated emitters that are positioned nearby laterally with a growing
axial separation (Fig. SN10.3). The lateral distance between the emitters was fixed to either ∆xy = 0 µm or ∆xy = 0.5 µm (diagonally).

When the two PSFs are at the same xy position, the learned PSF was harder to decode than the Tetrapod PSF especially at larger
axial separations (Fig. SN10.3 jaccard index last data point). However, when the emitters were positioned ∆xy = 0.5 µm apart in the
lateral dimension, the learned PSF quickly recovered and caught up with the Tetrapod PSF.

Finally, note that in our optimization the emitters were randomly sampled in space. Therefore, the case of zero lateral separation
will happen with zero probability, which explains why the net will did not account for these negligible cases when designing the PSF.
While potentially an additional loss function that ensures minimal correlation of the PSF across the axial dimension could further
optimize such cases, in reality, such cases are difficult to localize with satisfying precision anyway, and are therefore negligible.
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10.4 Experimental precision calibration

In cellular imaging (see section 12), precise ground truth is difficult-to-impossible to obtain. Therefore, to experimentally compare the
precision of the learned PSF to the Tetrapod PSF, we scanned a fluorescent microsphere using 100 nm steps in the axial dimension.
Since moving the microscope objective in oil is not interchangeable with moving the emitters in water, we acquired a larger axial range
of ≈ 5 µm. In order to match the SNR of the measurement for both PSFs, we switched between the two masks in each axial step.
Afterwards, the SNR of these measurements was digitally degraded to match the desired conditions. For the telomere conditions, the
sum of the PSF was normalized to 30K counts, and afterwards a uniform background of 20 counts per pixel was added. The result was
then passed through a per-pixel Poisson distribution and added to a read noise with a standard deviation of σ=10 counts. This was
repeated 100 times at each axial position, each time with a different noise realization. For the STORM conditions the noise was kept the
same, only this time the sum of the PSF was normalized to 9K counts.

In this experiment, it is of paramount importance to have an accurate PSF model as the precision of the localization net is directly
related to the accuracy of the PSF model. Therefore, in parallel to this work, we have developed VIPR [46], a per-pixel phase retrieval
method that is able to accurately model the learned phase mask. Here, we used VIPR to retreive both the Tetrapod and the learned
masks in order to generate training examples for the corresponding CNN. Note that this is different from the method presented later
in section 11 which we used only for the Tetrapod PSF in the telomere imaging experiments (Fig. 5 main text, and Fig. SN13.1,SN13.2).

For the telomere conditions (Fig. SN10.4), the results were in agreement with our simulations (Fig. 4 main text). Both PSFs had
a similar performance, although they did not reach the CRLB due to our finite voxel-size (Fig. SN10.4c). However, for the STORM
conditions (Fig. SN10.5), while the Tetrapod PSF reached the CRLB, the learned PSF was not able to reach the CRLB in the axial
dimension. While we expected it to perform slightly worse than the Tetrapod for a lower SNR, in the single-emitter case (Fig. SN10.1b
right panel), the loss in performance was worse than expected.
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both PSFs. dots mark the estimated precision and continuous lines mark the calculated CRLB. Scale bar in red inset in a is 2 µm.
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This is due to the super-critical angle fluorescence (SAF) in the measurement on the coverslip (see Supplementary Video 6). This
component had little effect in the high SNR case, as the network was able to capitalize on the subtle differences in the PSF. However, in
the low SNR case these differences were below the detection limit causing the precision to drop. Nonetheless, when imaging in cells (>
1 µm) the SAF light effect vanishes, hence, the axial localization precision for the learned PSF is expected to improve and reach the
CRLB.

5000

Frame number
40003000200010000

z 
[μ

m
]

-3

-2

-1

0

1

1200 1400 16001000

0.3

0.5

0.7

0.1

3600 3800 40003400

-2.1

-1.9

-1.7

-2.3

z [μm]
10-1-2-3

X
 p

re
ci

si
on

 [n
m

]

0

10

20

30

40

a

c

10-1-2-3

Y
 p

re
ci

si
on

 [n
m

]

0

10

20

30

40

 

10-1-2-3

Z 
 p

re
ci

si
on

 [n
m

]

0

20

40

60

80

Learned
Tetrapod

10-1-2-3

Tetrapod

B
ia

s [
nm

]

-50

-25

0

25

50

x
y
z

 

10-1-2-3

Learned

B
ia

s [
nm

]

-50

-25

0

25

50

x
y
z

 

b

Tetrapod
Learned
Stage Z

z [μm] z [μm]

z [μm]

z [μm]

Fig. SN10.5. Experimental precision at low SNR. a CNN localizations for both the tetrapod (black dots) and the learned (orange
dots) PSFs overlaid on top of the stage readout position (blue steps). each z position was localized with 100 different noise realiza-
tions. Example PSFs are shown at both the lower (green inset) and the higher (red inset) parts of the axial range. b calibrated bias
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10.5 STORM simulation

To truely compare the performance of the learned PSF to the Tetrapod PSF in a STORM experiment, we need to match the imaged
structure, observed emitter blinking and SNR, and have access to GT positions. Since all of this is practically impossible to control
experimentally, we performed this comparison in simulation. To make our simulation as realistic as possible, we adopted the GT
structure and SNR from the EPFL high density training set MT0N1HD [4] (Fig. SN10.6a). This dataset is composed of 3 interleaving
microtubules, imaged over 2500 frames of highly dense emitters in 3D. The axial range of the structure was stretched by a factor of 1

4
to cover ≈ 3.5 µ. The lateral positions of the emitters were stretched by a factor of 110nm

100nm = 1.1 to match the CCD pixel size that the
learned PSF was designed for. As for the SNR, we empirically matched it to the EPFL simulation using our noise model. To achieve
this, we multiplied the number of photons from the EPFL simulation by 2 to turn them into counts. Afterwards, these counts were
assumed to follow a Poisson distribution in addition to uniform background of 20 counts per pixel. Finally, the resulting frames were
also corrupted by a read noise (assumed to be Gaussian) with a standard deviation of σ = 10 counts. Example two resulting frames
are shown in Fig. SN10.6b.

The results we got in terms of the Jaccard index, lateral RMSE, and axial RMSE, were 40% (43.5%), 31 nm (28 nm), and 31 nm (32.5
nm), for the Tetrapod (learned) PSF respectively. This means the learned PSF improved 3.5 % in terms of detection, gained ≈ 3 nm in
lateral resolution, and lost ≈ 1.5 nm in axial resolution. While these differences might feel insignificant, the resulting reconstructions
prove otherwise (Fig. SN10.6c,d). For example, the combination of the increased detection with the higher lateral precision is quite
apparent in the resulting lateral resolution (SN10.6c inset (i)). Moreover, the smaller lateral footprint of the learned PSF enabled
detection of emitters nearby the edge of the FOV which were missed with the Tetrapod ((SN10.6c inset (ii)). Furthermore, despite the
≈1.5 decrease in the axial RMSE, the recovered crossing of the microtubules in the XZ cross-section ((SN10.6c inset (iii)) was more
accurate with the learned PSF due to the increased detection.
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Finally, while our learned PSF proved to be superior to the Tetrapod PSF also in STORM conditions, keep in mind that it was
designed for the telomere conditions, namely axial range of [2, 6] and High SNR. Therefore, to truely optimize the performance with
our learned PSF for STORM imaging, we initialized the phase mask to the learned PSF for the telomere conditions (Fig. SN10.7a top),
decreased the SNR to match the STORM conditions, and increased the density by a factor of ×2 (Fig. SN10.7a middle) and factor of ×3
(Fig. SN10.7a bottom).

Interestingly, at low SNR the resulting PSF was simply a faster revolving version of the high SNR PSF in order to account for the
axial range shrinkage due to refractive index mismatch ([0, 4] in STORM compared to [2, 6] for telomeres). This effectively improved the
expected axial localization precision (Fig. SN10.7b right panel), allowing it to reach the performance limit of the Tetrapod even in the
single emitter case. Moreover, the increased density (Fig. SN10.7a middle and bottom panels) didn’t seem to phase the optical design
network, meaning our PSF can work at much higher densities, unlocking new grounds not explored before in dense localization.
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11 Phase retrieval and wobble correction

An accurate PSF model is crucial to achieve optimal localization precision. Hence, to correct for optical aberrations we implemented a

Phase Retrieval (PR) algorithm similar to [32, 44]. First, we scanned the objective with 80 nm steps to acquire an axial stack
{

y f i
nom

}80

i=1
of a single bead (Tetraspeck 0.2um) using the same optical setup of the biological experiments, i.e. excited by a 561 nm laser (Toptica
iChrome MLE), filtered (Chroma 575/90 bandpass) to have a similar wavelength to the cell experiments.

Note that since the bead is imaged on the coverslip, the imaging model discussed in section 3.1 is not a perfect representation. This
is because, near the coverslip (e.g. < 1 µm) we need to account for super-critical angle fluorescence which the mask wasn’t designed
for. Therefore, to nullify this model mismatch from the PR process, and exclusively capture optical aberrations that will be present
deeper in the sample, we used a vectorial diffraction model that assumes freely rotating dipoles [25].

The axial position of the bead was fixed to 0.1 µm which is the bead radius. To calibrate the wobble as function of the axial position,
we define the centroid of the axial slice matching the focus setting fnom = 0 to be the origin (x0, y0) = (0, 0). Moreover, the additive
aberration was assumed to be a combination of the first 50 Zernike polynomials not including piston and tilt:

Mretrieved = Mtheory +

50

∑
j=2

ajZj (S40)

This assumption simplifies the optimization process greatly, and reduces it to estimating only 48 Zernike coefficients. On the other
hand, this computational relief comes at the cost of modelling capacity since Zernike polynomials are smooth functions and not well
fitted to model phase-jumps (Fig. SN11.1 a (right panel)) such as in the learned mask or the double helix mask [1]. Nevertheless, we
were able to obtain excellent results with the theoretical learned mask, therefore, given the only approximate experimental GT, we
used PR only to refine the Tetrapod mask.

Next, let Mretrieved denote the retrieved phase mask, y f i
nom

denote the PSF image at focus position f i
nom, and (xi, yi) denote the lateral

displacement from the defined origin. The PR algorithm alternates between two steps:

1. Fix the retrieved phase mask Mretrieved, and use MLE in conjunction with the model (equation (S13)) to estimate the focus
position f i

nom, the SNR (Ni, bi), and the wobble (xi, yi) in each axial slice y f i
nom

:

Θ̂i =
(

x̂i, ŷi, f̂ i
nom, N̂i, b̂i

)
= argmin

Θi

(
−log

(
L
(

Θ; y f i
nom

)))
∀i ∈ {1, ..., 80} (S41)

2. Fix {Θi}80
i=1, calculate the respective model images

{
IΘ̂i

}80

i=1
, and update the retrieved phase mask Mretrieved:

âj = argmin
aj

T

∑
t=1

S

∑
s=1

80

∑
i=1

∣∣∣IΘ̂i
[t, s]− y f̂ i

nom
[t, s]

∣∣∣ ∀j ∈ {2, ..., 50}

Mretrieved = Mtheory +

50

∑
j=2

âjZj (S42)

The retrieved phase mask Mretrieved was initialized to the LC-SLM calibrated theoretical mask Mtheory, and
{

f̂ i
nom

}80

i=1
were

initialized to the designed scan positions. Note that differently from [44], here we employed this alternation strategy since the result of
each step depends on the result of the other. Therefore, for an accurate calibration of the wobble [78] over a large axial range we need
to calibrate it using the already retrieved pupil function. Moreover, this approach was more accurate than simply assuming a known
focus position from the stage readout. We found that for our setup 2 iterations were enough to achieve convergence.
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PSFs. Calibration is achieved by projecting the desired phase pattern on the available LC-SLM calibration voltages. b Correspond-
ing Zernike coefficients (according to Noll indexing) of the abberation in (a). The coefficients for higher polynomials were negli-
gible, and therefore omitted from the plot. c Comparison of the simulated PSFs using the calibrated/retrieved mask to an experi-
mentally measured z-stack of a fluorescent bead with a similar emission wavelength to the cell data. The PR algorithm managed
to recover the aberration for the Tetrapod mask (white arrows), and failed to recover it for the learned mask (yellow arrows). c
Calibrated lateral wobble as function of the focus position for the Tetrapod (left) and the learned mask (right). Scale bar is 3 µm.
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12 Experimental ground truth

To approximate ground truth 3D positions of the telomeres (Fig. SN12.1), we scanned the sample in the axial direction with 100 nm
steps covering a 5 µm range (see Supplementary Video 5). Next, the telomeres were localized in each frame using ThunderSTORM [79]
to extract the lateral position (i.e. XY centroid). Afterwards, the approximate axial position of each detected telomere was determined
by fitting a 2nd order polynomial to the mean intensity profile along 17 adjacent axial slices (Fig. SN12.1 b-d). The resulting z locations
were multiplied by a factor of 1.33

1.518 to account for refractive index mismatch [80, 81]. To compare the recovered positions to the
approximate experimentally calibrated GT, we corrected the lateral recovered position using the wobble calibration matching the
recovered axial position. To estimate the wobble for unmeasured axial positions we used cubic spline interpolation.
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Fig. SN12.1. Experimental ground truth estimation. a Focus slice with 3 marked emitters. b - d Estimation of the axial position for
the 3 emitters. The emitters vary in size (e.g. b vs. d) and signal counts (e.g. b vs. c), therefore the fit accuracy is limited. Scale bar is
3 µm.
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13 Telomere imaging

13.1 Additional fixed cell results
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Fig. SN13.1. Experimental demonstration for a higher focus setting. a Experimental snapshot with the Tetrapod PSF (left), ren-
dered image from the 3D recovered positions by the Tetrapod CNN (middle), and a 3D comparison of the recovered positions and
the approximate experimental ground truth (right). b Experimental snapshot with the learned PSF (left), rendered image from the
3D recovered positions by the learned PSF CNN (middle), and a 3D comparison of the recovered positions and the approximate
experimental ground truth (right). Note that the reconstructions PSFs were scaled according to their retrieved intensity, therefore
some appear dim, however their positions are correctly recovered as apparent in the right figures. The Jaccard index for the Tetra-
pod PSF was 0.85 compared to 0.89 for the learned PSF. Scale bar is 3 µm.
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Fig. SN13.2. Experimental demonstration for a lower SNR. a Experimental snapshot with the Tetrapod PSF (top), rendered im-
age from the 3D recovered positions by the Tetrapod CNN (middle), and a 3D comparison of the recovered positions and the ap-
proximate experimental ground truth (bottom). b Experimental snapshot with the learned PSF (top), rendered image from the 3D
recovered positions by the learned PSF CNN (middle), and a 3D comparison of the recovered positions and the approximate experi-
mental ground truth (bottom). Note that the reconstructions PSFs were scaled according to their retrieved intensity, therefore some
appear dim, however their positions are correctly recovered as apparent in the right figures. The Jaccard index for the Tetrapod PSF
was 0.52 compared to 0.72 for the learned PSF. Scale bar is 3 µm.
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13.2 Image normalization

To cope with the dramatically decreasing SNR throughout the live cell imaging experiment, we stretched the contrast of each
training/testing frame to the range [0, 1] (Fig. SN13.3) using the transformation:

I[0,1] =
I − Imin

Imax − Imin
(S43)

Where Imin and Imax are the minimum and maximum pixel value in frame I. This ensures that pixel values in the transformed
image lie within a narrow range(Fig. SN13.3) which enables learning a single network to localize the entire recorded movie.
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Fig. SN13.3. Normalization to the range [0, 1]. a Mean and standard deviation of experimentally recorded counts per pixel as func-
tion of time. The number of pixels in each experimental frame was n = 15, 723. b Mean and standard deviation of the transformed
experimental pixel values. c First (left) and last (right) experimental frames in the recorded movie. Scale bar is 3 µm.

13.3 Track linking and post-processing

The per-frame localizations were linked based on a simple 3D proximity tracker. All tracks started within the first 7 frames and were
relatively clustered in 3D with no bifurcations observed (see Suplementary Video 7). After linking, all tracks were smoothed using
a moving average filter of length 0.5 s (5 frames). Of course, mean squared displacement calculations were performed on the raw
tracks prior to smoothing. Finally, for more complicated tracking scenarios the reader is encouraged to link the CNN localizations by
resorting to a more robust tracking software such as [82].
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14 Supplementary videos

Supplementary Video 1. Localizations overlaid on experimental frames. This movie shows 70 representative experimental frames
followed by an overlay of their re-generated images using the recovered 3D positions by the CNN (Fig. 3b main text). Note that
the experimental frames are shown before and after the re-generated images for ease of visualization. The STORM experiment
was repeated independently for n = 3 cells, twice analyzing 20K frames and once analyzing 10K frames all leading to similar
performance. Scale bar is 5 µm.

Supplementary Video 2. Rotating 3D rendering of the recovered mitochondria. This movie shows a 3D rendering of the super-
resolved mitochondria spanning a 4 µm axial range (Fig. 3a main text). The z-range is rendered with a scaling factor of 2 to ease
axial visualization. Scale bar is 5 µm.
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Supplementary Video 3. Sweep through the axial slices of the recovered mitochondria. This movie shows a sweep through 33
nm axial slices of the rendered 3D histogram for the mitochondria data (Fig. 3a main text). Scale bar is 5 µm.

Supplementary Video 4. Phase mask learning via backpropagation. This movie shows the phase mask (left) and the correspond-
ing PSF (right) being learned over training iterations (Fig. 4c main text). Note that the phase mask is initialized to zero modulation,
meaning the standard microscope PSF. Scale bar is 2µm.
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Supplementary Video 5. Rotating Telomere z-stack without a mask. This movie shows a 3D rendering of the telomere data z-
stack without the application of a phase mask (Fig. 5b main text). As clearly shown in the rendered PSFs, the telomeres exhibit
different sizes and intensities. The experiment was repeated independently for n = 10 U2OS cells all showing similar characteris-
tics. Scale bar is 5 µm.

Supplementary Video 6. SAF light effect on the learned PSF. This movie shows the effect of the SAF light on the experimental
PSF with the learned phase mask. Upper panel shows the experimental PSF (left), the result of VIPR [46], the vectorial model as-
suming dipole emission, and the scalar model assuming isotropic emission. The lower panel shows the difference from the experi-
mental measurement for each model. The SAF light effect is indicated in the middle of the axial range with a red arrow. Scale bar is
2 µm.
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Supplementary Video 7. Volumetric tracking of telomeres in MEF cells. This movie shows 3D tracking of telomeres in live MEF
cells over a period of 50 seconds using the learned phase mask (Fig. 6a main text). White sticks point to the emitter being tracked.
Time is encoded in color. The results indicate that individual telomeres exhibit different types of movements. The experiment was
repeated independently for n = 10 MEF cells all showing similar characteristics and performance. Scale bar is 2 µm.
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