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Abstract—The segmentation of deformable objects from
three-dimensional (3-D) images is an important and challenging
problem, especially in the context of medical imagery. We present
a new segmentation algorithm based on matching probability
distributions of photometric variables that incorporates learned
shape and appearance models for the objects of interest. The main
innovation over similar approaches is that there is no need to
compute a pixelwise correspondence between the model and the
image. This allows for a fast, principled algorithm. We present
promising results on difficult imagery for 3-D computed tomog-
raphy images of the male pelvis for the purpose of image-guided
radiotherapy of the prostate.

Index Terms—Deformable segmentation, image-guided therapy,
medical image segmentation, prostate cancer, prostate segmenta-
tion, shape and appearance model.

1. INTRODUCTION

HE segmentation of three-dimensional (3-D) deformable

objects is both an important and interesting problem in
computer vision. It is important because of its natural applica-
tion in the medical arena; for example, segmentation of tumors
from computed tomography (CT) or magnetic resonance im-
agery (MRI) images can be critical in the treatment of cancer.
On the other hand, it is interesting because of the algorithmic
challenges inherent in extracting deformable objects from real-
world 3-D images. In the context of medical imagery, the key
segmentation-related challenges are the following.

* Challenge 1: The objects of interest are often diffuse and
lack strong edges.

* Challenge 2: There are often many objects, both of interest
and not of interest, within a small volume.
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* Challenge 3: Many objects have fairly similar intensity
profiles. Typically, this effect cannot be removed by
simple pre-processing such as histogram equalization.

* Challenge 4: Many of the objects are of roughly the same
shape. For example, the prostate and bladder are both
“somewhat deformed” spheres.

The algorithm presented in this paper uses learned models
for both the shape and appearance of objects to achieve seg-
mentation; learning both types of information is the only rea-
sonable way to deal with all four challenges. Our algorithm is
certainly not the first algorithm to combine shape and appear-
ance. However, existing algorithms that use both shape and ap-
pearance models (such as [6]) require a pixelwise correspon-
dence between the model and the image; this correspondence
problem can sometimes be difficult to pose rigorously and solve
efficiently. Instead, our algorithm characterizes a model object
by 1) its shape and 2) a probability distribution of the intensities
(or colors, textures) of the pixels within its interior. As a result,
comparing a particular model object to the image is as simple as
comparing two probability distributions. The algorithm allows
the shape to evolve until the optimal match is found.

The remainder of the paper is organized as follows. Sec-
tion II reviews the existing literature on segmentation of 3-D
deformable objects. Section III is the technical heart of the
paper and derives the equations that comprise the multiple-ob-
ject segmentation algorithm. In Section IV, we present the
results of our segmentation algorithm applied to an important
real-world problem in medical imaging: rapid, automatic con-
touring of the prostate and other structures from volumetric CT
datasets for the purpose of image-guided radiation therapy. This
experiment is meant to approximate the clinical application
of interest: quickly fitting a patient-specific organ model to a
CT image acquired just prior to treatment. Finally, Section V
concludes. A shorter version of this work appeared in [10].

II. PRIOR WORK ON SEGMENTATION OF
3-D DEFORMABLE OBJECTS

The automatic segmentation of 3-D deformable objects is an
active area of research in computer vision. A useful taxonomy
of existing algorithms can be based on the type of learned infor-
mation they use.

1) No Learned Information: The main exemplar of this type
of approach is the traditional active contour or “snake” [20].
More recent work (e.g., [1]) has focused on geometric curve
evolution, combined with level sets [23], to allow for both topo-
logical changes to the object and greater numerical stability.
Standard active contour methods that seek edges tend to have
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difficulty when the objects to be segmented are blurry or not
sharply delineated from the background (such as the prostate
in Section IV below). Extensions such as [3] try to segment on
the basis of appearance by evolving the surface based on simple
criteria related to the intensities (or colors) of the pixels in its
interior; these methods achieve greater accuracy and robustness
at the cost of a major reduction in speed. In general, algorithms
that do not use learned information are constrained in terms of
what they can segment; they will have difficulties with each of
the four challenges posed above.

2) Learned Shape Models: Some researchers have aug-
mented a level-set active contour segmentation algorithm with
a term that biases the curve evolution toward shapes that are
judged to be more likely based on the training set, based on
principal component analysis (PCA) [22], [28]. These methods
have been extended to allow for simple (nonlearned) models
of appearance [33], [34]; for example, the intensities within
the segmented areas may be forced to have highly differing
means or variances. Segmentation of 3-D medical images has
also been accomplished by the coarse-to-fine deformation of
a shape-based medial representation model, or “m-rep” [25],
[31]. Algorithms that possess only a learned shape model can
fall prey to challenges 3 and 4.

3) Learned Appearance Models: A classic example of this
type of technique is brain segmentation based on classification
of the intensities of individual voxels, such as [37]. Another,
rather different version of this sort of segmentation involves
the nonparametric warping of a target surface to a deformable
atlas [19]. Contours from the atlas can then be transferred onto
the target volume. In either case, when no shape information is
incorporated for the domain of interest, a low cost can be as-
signed to segmentations that could never occur in a real situa-
tion. Hence, these methods may have trouble with challenges
2, 3, and 4. Speed can also be a drawback when iterative warp-
ings between entire image volumes are involved. Some active
contour models [24] assume that one has a probabilistic charac-
terization of appearance that is learned beforehand.

4) Learned Shape and Appearance Models: There are a va-
riety of methods that model the shape and appearance of an ob-
ject using PCA. The standard-bearer for such methods is the
“active shape and appearance model” of Cootes et al. [6], which
has been successfully applied to the 3-D segmentation of med-
ical volumes, including magnetic resonance images of the brain,
heart, and articular cartilage [15], [21], [38]. The main draw-
back of the active shape and appearance model has already been
mentioned: it requires the computation of a pixelwise correspon-
dence between the model and the image. We will say more about
this in Section III-B.

III. THE SEGMENTATION ALGORITHM

In this section, we describe the heart of the proposed algo-
rithm: the procedure for fitting a combined shape-appearance
model to an image. The optimal fitting of the model results in the
segmentation of the image. A key feature of the segmentation
algorithm is that it can work with any parametric shape-appear-
ance model that is C'! in its parameters, as opposed to methods
where the fitting algorithm is customized to a particular repre-
sentation of shape-appearance.
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The basic idea is as follows. The shape is given by a descrip-
tion of the surface, or multiple surfaces in the case of multi-ob-
ject segmentation. The appearance is described by a probability
distribution of some photometric variable inside the object of in-
terest, or multiple distributions in the case of multi-object seg-
mentation. A shape-appearance pair is then given by (surface,
distribution), and this pair is considered sufficient to charac-
terize an object for the sake of segmentation. The learned model
is a low-dimensional manifold in the space of such pairs. To
verify how well any particular shape-appearance pair matches
the image, we compute the empirical distribution of the photo-
metric variable inside the shape within the image; this distribu-
tion is then compared to the appearance model. We therefore
evolve the shape of an object (or multiple objects) until the em-
pirical distribution(s) best matches the model distribution(s). In
the remainder of this section, we flesh out these ideas.

A. Terminology

In this section, we describe some of the notation needed to de-
fine the problem rigorously. In the case of single-object segmen-
tation, a model-instance is described by a (surface, distribution)
pair. The distribution is taken over some photometric variable;
in the experiments we perform, this variable is grayscale inten-
sity, though it may also be color or texture. Given that the image
is discrete-valued, we will assume a probability mass function
over the intensity. However, all of the analysis below can easily
be transferred to the case of probability density functions (which
might be more relevant in the case of textures). In the case of
multi-object segmentation, a model-instance will be specified
by J (surface, distribution) pairs, one for each object.

We assume each surface is a topological sphere and may
therefore be written S : S? — R2. For convenience, we will
denote a point on the surface using a parametrization of S? as
S(u); however, the particular parametrization chosen is unim-
portant. Let us denote the image by I : R* — {1,...,n}; the
image is piecewise constant, where the “pieces” correspond to
voxels (which have positive volume). We denote a probability
distribution by q = (g1, - - -, qn ), where ¢; = prob(I(z) = i);
of course ¢; > 0 and ) ;¢ = 1. Thus, a model-instance is
given by (S(-),q). The shape-appearance model is a low-di-
mensional manifold in the space of such model-instances;
a d-dimensional model is parametrized by # € R?, and we
will write (S(-;03),q()) (sometimes condensing S(-; ) to
S(3)). One particular form for the shape and appearance model
(S(8), a(B)) will be discussed in Section IV; in the subsequent
derivation, the particular form is unimportant.

The goal is to find the particular model-instance, i.e., the par-
ticular 3, for which the model best matches the image. In the fol-
lowing section, we describe a natural criterion for scoring such
matches.

B. Segmentation Criterion

Given a surface S, let p° be the distribution (probability mass
function) of intensities lying inside the surface .S. This can be
formally defined as follows. Let V' be the volume inside of S
that is, let S = 9V. In this case

ps _ meV 5<I($)7i) dz
‘ fa:GV diE

ey
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where 6(i,j) = 1if ¢ = j and O otherwise. The numerator
in this equation is simply a frequency count of the number of
voxels with intensity ¢; the denominator is the volume of V,
which normalizes pf so that it sums to 1. We will refer to p° as
the empirical distribution corresponding the surface S.

The goal of segmentation is to find a region in the image that is
most like the model. That is, we would like to find a model shape
S(3) whose empirical distribution p>(*) most closely matches
its model distribution q(/3). In other words, the segmentation
can be posed as

min K (p5),q(9))

where K is some suitable measure of dissimilarity between
probability distributions. Before turning to the important issue
of the functional form of K, let us discuss, in general terms, the
advantages of such an algorithm.

The key feature of this segmentation algorithm, compared to
other joint shape-appearance model-based algorithms, is that
there is no need to find correspondence between the pixels of
the model and those of the image. Algorithms to find pixelwise
correspondences are problematic for two reasons: first, they are
relatively slow; second, it is often not obvious how to rigorously
pose the problem of finding such a correspondence, and so heuris-
tics are needed. For example, in the canonical Active Appearance
Model [5],inordertodirectly compare the texture (appearance) of
two shapes, they must first be warped into the same “shape-free”
or “mean-shaped” coordinate system using a triangulation-based
interpolation method. While modern graphical processing units
(GPUs) may have made this warping process faster, it is not
clear that interior “correspondences” induced far from the shape
boundaries are very reliable; nor does the volume-to-volume
warping satisfy any rigorous optimality conditions.

In the proposed algorithm, by contrast, pixels are not com-
pared directly; instead, distributions are compared. Such a
comparison can be performed very quickly; furthermore, as
we shall see below, there are natural mathematical measures
for comparing distributions. Thus, we circumvent the two
problems associated with methods based on pixelwise corre-
spondences mentioned above. It must be acknowledged that
some information is obviously lost in performing distribution
comparisons instead of pixelwise comparisons. However, we
show that in relevant experiments this loss of information does
not adversely affect performance. It is also natural to consider
modeling the intensity distribution of the exterior of an object
as well as the intensity distribution of its interior, to guard
against underfitting of homogeneous regions; in our application
this seems unnecessary and may even be disadvantageous (see
the discussion of Fig. 9 in Section IV-C). In any case, it would
be straightforward to incorporate such a term in the derivation.

There are several obvious candidates for the metric on dis-
tributions K from information theory. For example, we might
choose the Kullback—Leibler divergence

- Di
K(p,q) = E pi log .
i=1 v
Other possibilities include one minus the Bhattacharyya coeffi-

cient [4] and the chi-squared measure. However, such informa-
tion theoretic distances are known to be quite problematic [27].

The reason for this is that information theory is unconcerned
with the values of the random variables in question; only the dis-
tributions over these variables matter. To see this, imagine three
images: I is all white—I (z) = 255 for all ; I5(z) is nearly
white—I>(z) = 254 for all z; and I3 is all black—I5(z) = 0
for all 2. Let us now form empirical distributions p', p?, p* of
these images by histogramming their pixel values; all three have
distributions that are §-functions, peaked at 255, 254, and 0, re-
spectively. Thus, if K is the Kullback-Leibler divergence, then
K(pt,p?) = K(p',p?) = oo; that is, p? is as close to p? as
itis to p3. However, in an intuitive visual sense, the two images
I, (white) and I (almost white) are clearly much closer to each
other than I; (white) is to I3 (black). In order to take this into
account, other metrics are needed.

Rubner et al. developed one such metric known as the Earth
Mover’s Distance [27], which takes into account the values of
the random variables. While this is an excellent candidate for
K in theory, it can only be computed by solving an optimiza-
tion problem, and the distance is continuous, but not everywhere
differentiable, in the arguments p and q. Since we will need to
take derivatives, the Earth Mover’s Distance is unsuitable. In-
stead, we use another distance based on cumulative distribution
functions (cdfs). In particular, let

P = ZP;‘; Qi = qu
= =

be the cdfs for p and q. Then we may use the cdf distance

K(p,a) =Y |Pi—Qi" ©)
i=1

where o > 1. This is simply an “unnormalized” L, distance

between the two cdfs, taken as vectors. (Note: we exclude the

possibility of & = 1 since this renders the function K nondif-

ferentiable when P; = @; for any ¢.) This distance was first

proposed in [30].

To see why the cdf distance is more effective at capturing
similarity than the information theoretic distances, let us return
to the example of the three images. Based on the pdfs p’, we may
compute the cdfs P?. A simple calculation shows that using the
cdf distance, the distance between the white and almost white
image is K (p!, p?) = 1, while the distance between the white
and the black image is K (p!, p?) = 255 (and K (p?,p?) =
254). One can imagine more complex cases that illustrate the
same phenomenon. Note that the cdf distance is only sensible
when the variable itself is one-dimensional; however, as we will
be using grayscale intensities in our application, this does not
pose a problem.

When we wish to segment multiple objects at once, our
model is given by J object descriptors {(S;(-; ), q;(5)),j =
1,...,J}, and the goal is then to solve

J
min} K (psi(ﬂ); q]'(ﬁ)) :
j=1

Note that there is a single parameter vector 3 that controls all of
the objects; this captures the notion that the objects’ shapes and
appearances may be interrelated. Although a more general ver-
sion of this criterion might be a weighted sum of K -functions,
we have found the unweighted criterion works well in practice.
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A related density matching approach has been explored pre-
viously by the authors, though not in the context of medical
imagery. In [11], no shape information is used, resulting in a
partial differential equation that aims simply to maximize the
density matching without regard to shape. Other researchers
have employed a related approach [18]. In [39], a shape term
is added to the density matching functional, leading to a soft
shape constraint.

C. Optimization of the Criterion

We wish to minimize
K(5) = K (057, a(8))

in the case of single object segmentation. (We will only deal
with the single object case in this section; the multi-object case
follows straightforwardly.) We will solve for a local minimum
of the criterion via gradient descent, i.e.,

3 0K

a o 3)

The computation of the derivative of K with respect to the pa-
rameters [ is complicated by the reliance of the surface itself
on the parameters. In the following, we will assume that K is
a general distribution distance; we will specialize to the case of
the cdf distance at the conclusion of the derivation.

Expanding (3) gives

A < [OK op;
dt Z{apiaﬂ—F

0K dg;
dq; 9B

“4)

where we have shortened pf(ﬁ ) to p; and ¢;(5) to g;. But (1)
yields

fer(ﬁ) 6(I($)7Z) dx _ Nis(ﬂ)

S8 _ -
fzev(ﬂ) d V(B

i

where |V (/3)] is the actual measure of the volume V'(3); thus

i)
— Pi 6[3 > (5)

a1 (azvi
op V(B \ 0B

In order to compute dN; /9 and 9|V|/93, we need to be
able to determine derivatives of the form dvy/Jf, where ¢ =
/. v (s) v(z)dz. The variational derivative of ) with respect to
the surface S (where S = V) is given by 69/6S = v(u)n(u),
where n(u) is the normal to the surface at the point S(u) (see,
for example, [2]). It can be then be shown by a sort of general-
ized chain rule that

% B a5

B B
where 05/90 is a d x 3 matrix (d = dim(8)). To simplify
future computations, we introduce the notation

v(w) 5= (u; B)n(u; B) du

Jues?

D(w; B) = s B)n(u; B)

1
V(5 >|aﬂ(

A <~ [OK 9g;
dt z;{aqi o
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so that
5= VI p du.
We have therefore that
1 ON;
- T(u; 8)6(I(S(u; B)),14) d
V08~ ) (u; B)6(L(S(u; 8)), 1) du
1 9V / Clw: B) d
VI 08~ s 1
Plugging these results into (5) yields
Ipi ' )
a7 = [(6(1(S(us B)), i) — pi)L'(u; B)] du.
8ﬂ Jues?

Combining this in turn with (4) gives

1=

+§§ { /u o [(5(I(S(u; ﬂ)),i)—pi)r(u;ﬂ)]d“”
_ / z"jpl % 5(I(S(U;ﬂ))7i)1

E)K 9gi
(v e = Z 54, 9

yielding finally

dﬂ / [g 0K a_g

I'(u; B)du
8]71 8p] ( )

0K 9q;
Z dq; 0 )

Equation (6) contains the situation for the case of a general
distance function K between distributions; we now specialize
to the case where K is the cdf distance given in (2). In this case,
it can be shown that

J':I(S(u;ﬂ))}

(6)

oK
Ipi

=a) sign(P; — Q;)|P; — Q"
=i

and 0K /0q; = —0K/Op;. This can be plugged directly into
(6) to get the final parameter flow, which in turn will yield the
minimum of the distance K.

In the next section, we discuss some implementation issues
that arise in the computation of d/3/dt.

D. Implementation Issues

In general, we cannot compute the integral in (6) analytically;
we must resort to a finite element method. This is relatively
straightforward, given that the surface representation we use in
our application is a mesh (simplicial complex). For any triangle
of the mesh, the normal is fixed; furthermore, the triangles are
chosen to be small enough so that neither 95/90 nor I varies
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much over the triangle. As a result, we can approximate the in-
tegral in (6) by

/ 3o 0K K
Jues? | i Ip 3=I(S(w;))

" 90K 0K
NZ Zpl((“)_p,_a_p]

teT Li=1

] I'(u; B)du

F(Uﬁﬂ)at

J=I(S(u¢;B))

where 7' is the set of triangles in the mesh, u; is a representative
point on the triangle ¢ (typically the centroid), and a; is the area
of the triangle ¢. While 95/90 is only explicitly given at the
vertices of the mesh (this is the way it is learned), one can easily
interpolate 9S/9[ to any other point using the piecewise linear
structure of the mesh.

In principle, the empirical distribution p; could be computed
exactly, using the fact that the surface S encloses a polyhedral
volume, and the image is piecewise constant. However, this com-
putation would be rather expensive. Instead, we use the following
approximation that has proven to be very accurate. Each slice of
the image is intersected with the mesh representing the surface
S; this yields a series of polygons. There are standard, fast algo-
rithms for determining which pixels in a two-dimensional (2-D)
image lie within a polygon; for each slice, one such algorithm is
used to compute the histograms for that slice’s polygon. These
histograms are then added together, and normalized. The re-
sulting empirical distribution is extremely close to the true em-
pirical distribution, and can be computed very quickly.

IV. APPLICATION TO IMAGE-GUIDED RADIOTHERAPY
OF THE PROSTATE

Now we demonstrate the application of our segmentation al-
gorithm to our motivating problem: the segmentation of the
prostate, as well as adjacent radiation-sensitive organs (e.g., the
bladder and rectum) from 3-D CT imagery, for the purpose of
improving radiation therapy. Typically, a patient is treated on
thirty to forty separate occasions, and the goal is to reliably
irradiate the same tissue at each session by localizing the or-
gans of interest immediately before treatment. This is a diffi-
cult problem, since the position, shape, and appearance of the
bladder and rectum can change quite dramatically from day to
day, and these organs in turn press on the prostate, causing it to
deform. Manual segmentation of the organs is out of the ques-
tion; a radiation oncologist can take 20 minutes to outline the
prostate alone, while treatment sessions are typically scheduled
in half-hour slots. Hence, an efficient and accurate computer vi-
sion method for automatically estimating the organ outlines in
the daily CT images, using a patient-specific model, would be
of enormous benefit in the process. While methods based on
semi-automatic translation [17] or rigid motion [36] of a fixed
prostate model have been considered, these are generally not
sufficient to capture the true deformations of all objects of in-
terest. Using a nonoptimized implementation on a modest PC,
our algorithm is able to perform the nonrigid multi-object con-
touring procedure in well under a minute.

Several vision approaches have been presented for prostate
segmentation from 2-D transrectal ultrasound (TRUS) images;
see [14], [29] for reviews. For example, Gong et al. [14]
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Fig. 1. The interpolation and resampling process. (a) Original points on organ

boundary drawn by radiation oncologist. (b) Spline fit interpolated through
original points. (c) Evenly spaced points resampled around spline contour.
(d) Evenly spaced points, with interior constraints indicated by +’s.

described a method based on 2-D deformable superellipses,
while Shen, Zhan, and Davatzikos [29] proposed an active-con-
tour-based method involving Gabor filter banks. Snake-based
algorithms with manual initialization for 3-D ultrasound images
were described by Hu er al. [16] and Ghanei et al. [13]. The
work most comparable to the algorithm described here was
recently proposed by Tsai et al. [33], [34] and applied to 3-D
MRI images of the prostate, using PCA on level sets combined
with a region-based segmentation algorithm.

A. Learning the Shape Model

In order to implement (6), we must have a shape-appearance
model, (S(5),a(8)); this model is to be learned from training
data. Here we describe one algorithm for learning a statistical
shape model from this data. We emphasize that if necessary, this
simple model could be replaced with a more sophisticated shape
model like those discussed in Section II, but the segmentation
equations would remain the same. The treatment of the appear-
ance model is left for the next section.

The training images consist of 3-D clinical data sets in which
the organs of interest in each 2-D axial image have been con-
toured. In particular, a radiation oncologist typically contours
organs in a planning scan by marking several boundary points
in each of 2040 slices of a CT volume. There are generally
different numbers of points per slice, and the points are not usu-
ally equally spaced around the object contours [see Fig. 1(a)].
Furthermore, the number of slices per organ varies within the
training data set. Our goal is to build a 3-D deformable shape
model of the objects of interest represented by the training data.

Our approach is to construct a surface that interpolates all of
the original contour points for each training data set, and then
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Fig. 2. Three 3-D prostates recovered by the variational implicit surface method, which interpolates the original contour points. The symbols on each contour

indicate the locations of several corresponding points.

to resample this surface in the same way for each training data
set in order to obtain a set of roughly corresponding points. The
first step is to fit a spline through the unevenly spaced points
for each contour [Fig. 1(b)]. This spline is then resampled to
obtain a given number of evenly spaced points around the con-
tour [Fig. 1(c)]. We imagine that these resampled contour points
(for all slices) are on the O-level-set of a function f defined over
R3. We would like to find the entire O-level-set, and hence, a
surface in 3-D that interpolates the original contour points. The
framework of variational implicit surfaces proposed by Turk and
O’Brien [35] does exactly this. Briefly, we solve an optimization
problem that looks for the smoothest function whose 0-level-set
exactly contains the sample points. It turns out that this opti-
mization leads to an analytical solution for the level-set function

f(@) =) wid(z —x;) + P(x)

i=1

where the ;s are contour points, ¢(z) = |z|? log |z, and P(z)
is a linear polynomial in z. In order to compute the weights w;
and the coefficients inherent in P(z), we use the fact that we
already have several samples of this function f(z;) = v;, where
x; s a contour point, and v; = 0, since each contour point is on
the O-level-set. We can rewrite these samples as

vi =Y wid(w; — ;) + P(xs)
7=1

which is a linear least-squares problem in the weights w; and
the coefficients of the polynomial P(z). For stability, Turk and
O’Brien suggested specifying an additional set of sample points,
slightly inset from the contour sample points, where the func-
tional value is equal to 1. These additional points are indicated
by +’s in Fig. 1(d), and are obtained simply by travelling a small
fixed distance inwards and normal to the spline at each contour
point.

At this point, we have obtained a complete level-set function
fr for a given organ in each training data set k. Now we re-
sample each O-level-set surface with the same number of equally

Block Histograms

no match

» S Training Histograms

Fig. 3. The image is shown on the left; the object is textured, and the initial
position is shown in bold. Note that the initial position only overlaps the object
to a small extent. On the right, the histograms of two blocks, A and B are shown;
the histogram of block A matches one of the training histograms well, while the
histogram of block B does not.

spaced slices and the same number of points distributed around
the contour in each slice. Points in the contours from matching
slices in different training sets are put into correspondence based
on angle and arc-length constraints. Fig. 2 illustrates the vari-
ational implicit surface and correspondence grid for three dif-
ferent training datasets.

Once the contours have been resampled and put into cor-
respondence, we train a 3-D deformable model using a linear
representation derived from PCA, a common technique in the
model-based segmentation literature; see for example [6]. The
general scheme is as follows: each training surface is repre-
sented by the mesh obtained above, and is thus specified by a
vector whose elements are the z-, y-, and z-coordinates of each
of the vertices. The vectors representing the three organs are
then stacked into a combined vector. There is one such com-
bined vector for each training image, and PCA is performed on
these combined vectors. This results in a mean shape as well
as a rank-ordered set of orthogonal modes of variation. An in-
stance of the deformable model is specified by the weights on
these orthogonal modes. Hence, the 3 parameters in the seg-
mentation algorithm correspond to the weights on the principal
components. We note that there has been some work on discov-
ering an “optimal” correspondence between 3-D objects for the
purpose of PCA [7], [8]; however, this process seems to be very
time-consuming. We have found the algorithm described here
to work well enough in practice.
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Fig. 4.

True density and Model Density

0.08

— model
- true

0.07

0.06
0.05
0.04
0.03
0.02
0.01

0 . - N
0 20 40 60 80 100 120 140 160 180 200

(c)

(a) and (b) The blocks that contributed to the estimation of the joint model density in one slice of patient 6082 for the prostate and rectum, respectively.

The search region is shown with a dotted boundary, and the selected blocks are outlined in white. (c) The true model density compared with the model density
generated by the selected blocks (left, prostate; right, rectum). The match is quite good.

We may now turn to the actual shape models that are gener-
ated by running this algorithm on three patient datasets, each of
which contains about 15 512 x 512 x 35 CT images of the male
pelvis from the same patient taken several days apart (under
prone, bladder-empty conditions). In each of the images, a radi-
ation oncologist had outlined the prostate and outer rectal wall.
We resampled each object to have 20 slices with 20 points on
each contour, and built two PCA models for each scan: one
model using the prostate alone, and one joint model for the
prostate and outer rectal wall (since the rectum is a radiation-
sensitive structure that should be detected and avoided during
radiation delivery). All PCA models were leave-one-out, i.e., the
shape model for a given scan was learned from all the remaining
scans of the same patient. In these examples, we used 10 modes
for both shape models. We note that this intra-patient problem is
of clinical importance; we would like to segment each volume
based not on a model of how the organs of the general popu-
lation vary, but of how the organs of the specific patient under
treatment are expected to vary.

At this point we re-emphasize that while the specific shape
model we use in our application is built based on sparse pix-
elwise correspondences estimated from training data, the seg-
mentation itself does not depend on estimating pixelwise cor-
respondence between the shape model and the image. The seg-
mentation algorithm could easily apply to a shape model built
by “correspondence-less” means. In any case, this shape model
is built on geometric correspondences on surfaces, rather than
photometric correspondences on volumes.

B. Computing the Appearance Model

To form an appearance model q(() from the training data,
we could perform PCA on training histograms. In fact, the vec-
tors representing the histograms could be appended to those
representing the shapes, which would yield the desired joint
model. However, there are two major problems with this ap-
proach. First, PCA on histograms does not preserve the property
that histograms are positive and sum to 1. Second, a linear com-
bination of training histograms often produces new histograms
very unlike any training example.

Instead, we employ a different approach, based on the idea
that there will be some overlap (perhaps small) between the ini-
tial guess of the object’s position and its true position. Our goal
should be to extract that section of the initial object volume that
overlaps with the true object, and to form our model density
solely based on this. Of course, it is not obvious how to extract
this overlapping volume. The following heuristic is extremely
successful in practice, and is illustrated in Fig. 3.

For a given test image, the volume corresponding to the initial
object position is divided into blocks; denote the set of blocks
B = {b,}. For each block, we compute the histogram, h(b;);
we then determine how similar a particular block is to the model
by measuring its similarity to each of the training histograms,
{qtr@in} (there is one such training histogram for each training
image we receive). In particular, we compute

K; = min K (h(b;), qi"™").

If such a value is low, then we know that the cdf distance be-
tween the block’s histogram and at least one of the training his-
tograms is small; as a result, the block is likely to belong to
the true object. We can then rank order the blocks by their K;
values, and choose only the fraction o of the blocks with the
lowest K; values. These “good” blocks are then deemed to be
part of the true object, and the model density q can be com-
puted as the histogram of the union of these blocks. Note that «
must be chosen to be less than the fraction of the initial volume
that overlaps the true volume; while this fraction is not known
a priori, « = (.25 produced good results in practice. Note that
this strategy relies on the relative constancy, across space, of
the histogram of the relevant object. This assumption does not
seem to be a problem in practice, as the method generally per-
forms very well. In fact, the model density as computed using
this algorithm is often almost indistinguishable from the density
corresponding to the true position of the object; an example of
this phenomenon is shown in Fig. 4.

While the actual images had a dynamic range from O to 4095,
the image contrast is very low. Therefore, the appearance model
and fitting algorithm were applied to the images using values
from [864, 1264] to build 100-bin histograms.
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Fig. 5. Evenly spaced axial slices of scan 6042, without segmentation. Eight sequential slices of the CT volume are displayed (out of the 35 total slices input to

the algorithm.)

Fig. 6. Segmentation results for evenly spaced slices of scan 6042 using the prostate-only model (10 modes). The white contour shows the result at convergence.
The black contour shows the hand-drawn ground-truth contours supplied by a radiation oncologist.

(@) (o)

(a) AP, (b) lateral, and (c) oblique 3-D visualizations of the prostate-only model (solid) versus ground truth (wireframe) for scan 6042.

Fig. 7.
C. Results

We initialized the model at the position of the mean shape
of the PCA model (corresponding to 3 = 019x1), and allowed
it to converge. In our experiments, we used o« = 1.2 as the cdf
exponent in (2). Illustrative results for two of the scans of patient
06000 (i.e., scans 6042 and 6082) are shown in the following

Figs. 5-14. The median results for 48 total scans from all three
patients are summarized in Tables I and II.

Fig. 6 shows the segmentation results of the prostate-only
model, along with ground-truth contours as drawn by a ra-
diation oncologist, for sequential 2-D axial slices of the
3-D CT volume of patient 6042 (for visualization only; the
model and segmentation algorithms are fully 3-D). The raw
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Fig. 8.
the algorithm).

Evenly spaced axial slices of scan 6082, without segmentation. Eight sequential slices of the CT volume are displayed (out of the 35 total slices input to

Fig. 9. Segmentation results for evenly spaced slices of scan 6082 using the prostate-only model (10 modes). The white contour shows the result at convergence.
The black contour shows the hand-drawn ground-truth contours supplied by a radiation oncologist.

(b)

(a) AP, (b) lateral, and (c) oblique 3-D visualizations of the prostate-only model (solid) versus ground truth (wireframe) for scan 6082.

Fig. 10.

input images are shown in Fig. 5 for comparison. The CT
images have relatively low contrast in the area of interest;
the images in these figures have been histogram-stretched
for easier visibility (in medical imaging terminology, the
window is 400 and the level is 40). Fig. 7 shows 3-D vi-
sualizations of the final prostate-only segmentation results
for patient 6042 along with the ground truth. Figs. 8-10 show
analogous results for a different scan (6082) of the same patient.

Fig. 11 shows the segmentation results of the joint
prostate/rectum model, along with ground-truth contours as
drawn by a radiation oncologist, for sequential 2-D axial slices
of patient 6042. Fig. 12 shows 3-D visualizations of the final
joint-model segmentation results for patient 6042 along with the
ground truth. Figs. 13—14 show analogous results for a different
scan (6082) of the same patient. There is definite intra-patient
variability visible, especially in the rectum shape and appearance.
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Fig. 11.

Segmentation results for sequential slices of scan 6042 using the joint object model (10 modes). The white contour shows the segmentation result at

convergence. The black contour shows the hand-drawn ground-truth contours supplied by a radiation oncologist. The segmented organs are, from top to bottom,

the outer rectal wall and the prostate.

(b)

(a) AP, (b) lateral, and (c) oblique 3-D visualizations of the joint model (solid) versus ground truth (wireframe) for scan 6042.

Fig. 12.

One can appreciate the difficulty of the segmentation problem
in this context. The prostate organ presents no distinct “edge” in
the image itself (e.g., see the last two images in Fig. 9); an ac-
tive contour algorithm would naturally expand to segment the
entire region that has similar intensity to the prostate, including
the pelvic floor muscles and seminal vesicles. Radiation oncolo-
gists know the pelvic anatomy and take the intensity similarities
into account while contouring; this expert knowledge about the
underlying shape is implicitly incorporated during training of
the shape model.

In addition to the qualitative accuracy of the segmentation ob-
served above, we also report several quantitative measures taken
over the entire dataset (i.e., 48 total scans from three different
patients). The measures we evaluated include the following:

* 4, the probability of detection, calculated as the fraction
of the ground truth organ that was contained by the esti-
mated organ. For a good segmentation, v4 should be close
to 1.

* V4, the probability of false alarm, calculated as the frac-
tion of the estimated organ that lies outside the ground
truth organ. For a good segmentation, v ¢, should be close
to 0.

¢ The centroid distance, calculated as the norm of the vector
connecting the centroids of the ground truth and estimated

organs. The centroid in particular is of interest to a radia-
tion oncologist when designing a treatment plan.
¢ The surface distance, calculated as the median distance be-
tween the surfaces of the ground truth and estimated or-
gans, evaluated along 1000 rays randomly directed on the
surface of a sphere centered at the ground truth centroid.
The medians of these statistics over all the scans for a given
patientare reported in Tables I and I1. In addition, we are currently
working with radiation physicists to define an error measure
that is more relevant to the regions of interest for image-guided
therapy (e.g., the accuracy of the point where the anterior rectal
wall is tangent to the prostate). Timings on a modest computing
platform (uncompiled Matlab code, 1.67 GHz AMD machine
with 448 MB RAM) and iteration counts are also provided.
Our algorithm generally returns a high-quality segmentation
(i.e., vq near 0.9, v, near 0.1, prostate surface distance about
1 pixel). As can be seen from the original axial slices, this is a
difficult segmentation problem. We note in passing that even de-
termining “ground truth” in such cases is subjective; there have
been several studies on expert inter-observer variability in seg-
mentation (e.g., [9]) that report similar variability to the above
(though our algorithm, or indeed any automatic vision algo-
rithm, will certainly make some mistakes that no expert would).
In the future, we would be interested to compare our algorithm’s
performance to more than one expert observer’s contours.
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Fig. 13.

Segmentation results for sequential slices of scan 6082 using the joint object model (10 modes). The white contour shows the segmentation result at

convergence. The black contour shows the hand-drawn ground-truth contours supplied by a radiation oncologist. The segmented organs are, from top to bottom,

the outer rectal wall and the prostate.

)

g an eV

(a) (b)

(a) AP, (b) lateral, and (c) oblique 3-D visualizations of the joint model (solid) versus ground truth (wireframe) for scan 6082.

Fig. 14.

TABLE 1
QUANTITATIVE RESULTS FOR THE PROSTATE, USING THE PROSTATE-ONLY
MODEL APPLIED TO THREE DATASETS. THE CENTROID AND SURFACE
DISTANCE MEASUREMENTS ARE IN PIXELS (1 PIXEL = 0.9375 MM)

(c)

TABLE 1I
QUANTITATIVE RESULTS FOR THE PROSTATE AND RECTUM, USING THE JOINT
MODEL APPLIED TO THREE DATASETS. THE CENTROID AND SURFACE
DISTANCE MEASUREMENTS ARE IN PIXELS (1 PIXEL = 0.9375 MM)

Patient ID 06000 | 07000 | 08000 Patient ID 06000 | 07000 | 08000
Number of scans 14 17 17 Number of scans 14 17 17
median vy, prostate 0.894 | 0.811 | 0.857 median vy, prostate 0.829 | 0.864 | 0.803
median vj,, prostate 0.102 | 0.182 | 0.118 median vg,, prostate 0.135 | 0.123 | 0.186
Median of centroid distance, prostate (pixels) 3.17 5.29 4.07 Median of centroid distance, prostate (pixels) 4.86 3.67 5.87
Median surface distance, prostate (pixels) 0.57 1.02 0.83 Median surface distance, prostate (pixels) 0.93 0.79 1.19
Mean fitting time (sec) 14.7 10.2 17.3 median vy, rectum 0.745 | 0.765 | 0.711
Mean number of iterations 8.6 7.6 8.8 median vgq, rectum 0.184 | 0.105 | 0.176
Median of centroid distance, rectum (pixels) 6.92 4.92 6.81
V. CONCLUSION AND FUTURE WORK Median surface distance, rectum (pixels) 143 2.07 2.28

We have demonstrated a segmentation algorithm that matches
a learned model of shape and appearance to an image by com-
paring empirical and model probability distributions. The
algorithm produces good results on real, challenging, medical
images. In our experiments, the algorithm returns a segmentation
resultin a matter of seconds for the prostate-only model, and well
under a minute for the joint model, compared to the 30 minutes
it might take a resident to contour the same images by hand.
We would expect an order of magnitude speed-up if the algo-
rithm were implemented in C++ and optimized for efficiency.

Mean fitting time (sec) 47.7 32.5 34.6

Mean number of iterations 12.6 7.1 6.4

Therefore, we conclude that our segmentation algorithm has sub-
stantial promise for the problem of rapid, automatic contouring.

Since the algorithm relies on local optimization, future work
will focus on coarse-to-fine methods of sampling the model
space as well as smarter initialization, to ensure that the algo-
rithm is not trapped in an incorrect optimum. Our experiments
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show that in some cases, there exist values for the model param-
eters that can produce better alignment with the ground truth
than those to which the fitting algorithm converged. It would
also be straightforward to incorporate constraints on the mag-
nitude of the parameters to prevent the model from assuming
implausible shapes (e.g., self-intersections), though this has not
yet proved to be a problem in our experiments.

Another direction for future work relates to the model we
chose for our application. Strict linear models can require many
modes to capture complex variations. We are investigating mul-
tilinear [12] or nonlinear [26], [32] models to that will allow
us to use fewer parameters, and will ensure that any model pa-
rameter values produce a “valid” instance of shape and appear-
ance. We would also like to perform a careful experimental com-
parison of this method with techniques based on more complex
models that use point correspondences.

We have demonstrated results on intra-patient datasets in
this work; we have also investigated inter-patient prostate
segmentation (see [10]). In our experiments, we found that the
inter-patient shape variability is high enough that a substantial
number of training sets would be required to build a model
that would apply to the general population. However, we are
currently analyzing a corpus of training data that includes CT
volumes and contours that vary along both inter-patient and
intra-patient axes. That is, for each of many patients we have
many examples of that patient’s bodily state. Using this data, we
plan to learn a two-axis model of inter-patient and intra-patient
variation that is more suitable for clinical treatment planning
than the solely intra-patient models described here.
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