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Abstract
In this paper we propose two new types of features

useful for problems in which one wants to describe ob-
ject or image relationships rather than objects or im-
ages themselves. The features are based on the no-
tion of distribution flow, as derived from the classic
Transportation Problem. Two variants of such features,
the Distribution Flow (DFlow) and Displacement Field
(DField), are defined and studied. The proposed fea-
tures show promising results in two different applica-
tions, Inter- and Intra-Class Relationship Characteri-
zation, and improve on simple concatenation of corre-
sponding pairs of histograms.

1 Introduction

Many computer vision applications deal with object
or image descriptors, and their use in classification or
recognition tasks. In this paper, we examine an interest-
ing variation on this theme: rather than finding descrip-
tors for individual object or image classes, we define
descriptors for relationships between pairs of object or
image classes. This approach can be quite valuable –
understanding the relationship between the paintings of
Monet and Toulouse-Lautrec, for example, may tell us
something about their respective styles, which would
have been difficult to glean directly from separate anal-
yses of their paintings.

The problem of trying to characterize such relation-
ships seems to have been relatively unstudied thus far.
The well known work of Hertzmann et al. [2] famously
examined the notion of “image analogies”; the goal,
however, was not to characterize such analogies, but to
perform de novo image synthesis. Our focus, instead,
will be on the characterization of such relationships.

2 The DFlow and DField Features

We begin this section by describing the DFlow, or
Distribution Flow feature in general terms. On the ba-

sis of this definition, we are then able to define a second
feature, called DField, or Displacement Field, which is
more compact than DFlow but captures its salient el-
ements. We then go on to show how such features
may be used in understanding two different types of
relationships within computer vision: relationships be-
tween objects (or images), and relationships within ob-
jects (or images). Both sets of relationships arise natu-
rally within the study of computer vision, and in Section
3, we give examples of both, and experimental evidence
which demonstrates that the new features are useful in
characterizing these relationships.

2.1 Definition of DFlow

In general terms, the DFlow feature is designed to
capture the relationship between two probability distri-
butions. This is a convenient way to frame the problem
of object or image relationships, as both objects and im-
ages may be captured by distributions; indeed, this stan-
dard technique is quite prevalent in object recognition,
for example in the Bag of Visual Words technique (see
e.g. [4]). Of course, there are several ways to capture
the relationship between distributions. Our solution to
this problem is to use the classic Transportation Prob-
lem [3, 5] to compute the transformation between the
two distributions.

Let us begin with some notation. Pixels in objects
or images are characterized by a feature vector z ∈ Rd;
in our case, we choose a combination of 3 color chan-
nels and texture (computed for example, as local neigh-
borhood entropy). An object or image, in its entirety,
is then characterized by a probability distribution over
z. For simplicity, we assume discrete distributions or
histograms for the two objects or images, which we
write compactly as a list of histogram bins with non-
zero probability, i.e.

{(zi, pki )}ni=1

where zi is a bin-center, pki is the corresponding prob-
ability mass for that bin for the kth probaility distribu-
tion (k = 1, 2), and n is the number of such bins. Note



that we have fixed both the number of bins and the bin-
centers across the two distributions.

The Transportation Problem is then formulated as
follows [3, 5]. Let the DFlow between the first and sec-
ond distributions be given by fij , where the indices i
and j range over the (non-empty) bins of the first and
second distributions, respectively. That is, fij can be
thought of as the part of bin i from the first distribu-
tion which is mapped to bin j of the second distribu-
tion. Now, let the feature distance between two feature
vectors be given by D(z1, z2); this may be the ordinary
L2 distance, or it may be some more complex metric.
Taking this feature distance as given for the moment,
we would like to solve the following optimization:

min
{fij}

n∑
i=1

n∑
j=1

fijD(z1i , z
2
j )

subject to
n∑

j=1

fij = p1i i = 1, . . . , n

n∑
i=1

fij = p2j j = 1, . . . , n

The goal of the objective function is to map the fea-
ture vectors from the first distribution z1i to correspond-
ing feature vectors from the second distribution z2j in
such a way that the feature distance between them is as
small as possible. However, we cannot reasonably ex-
pect that each bin of the first distribution maps neatly
to exactly one bin of the second distribution. Thus, we
allow bins from the first distribution to be spread over
several bins from the second distribution, subject to the
two constraints which ensure “conservation of probabil-
ity” for both of the distributions. The Dflow feature fij
thus captures the transformation of one distribution into
another.

Before making further comment, we note that the
Transportation Problem has been used in computer vi-
sion applications before, most notably for the computa-
tion of the Earth Mover’s Distance (EMD) [6]. Indeed,
a by-product of the EMD computation is the flow that
will be useful to us; however, in the context of EMD
the flow is nothing more than a by-product, and is used
only to facilitate the computation of the EMD metric.
By contrast, in the development of our algorithm, the
flow itself plays a critical role. It is also worth noting
that a few works have used somewhat related ideas [1],
albeit in the continuous setting and for different appli-
cations, such as registration.

2.2 Definition of DField

The DFlow feature fij is designed to capture the re-
lationship between distributions. However, one may no-
tice that is a rather large descriptor: its space complexity

Figure 1. Top: Images of roads with and
without traffic. Middle: DFlow descriptor.
Bottom: DField descriptor. Both descrip-
tors are computed from texture-based fea-
tures of the two images.

is O(n2), where n is the size (number of bins) in each
distribution. Furthermore, it is often the case in practice
that the DFlow is sparse, with many zero elements. It is
natural, therefore, to consider the possibility of a more
compact descriptor, based on DFlow.

The DField descriptor captures – for each bin –
where its probability mass moves. For bin i of the first
distribution, we define the DField δi by

δi =
∑
j

fij(zj − zi)

To understand this formula, let us imagine for a moment
that for i fixed, fij is a probability distribution. (In fact,
it is not, as

∑
j fij will generally be smaller than 1.) In

this case, zj − zi is the displacement bin i undergoes
(in feature space) in moving to bin j, so the DField δi is
like an expected displacement (again, in feature space).
This a very useful summary feature – it indicates how
the bins of the first distribution must move, in order to
transform into the second distribution.

Figure 1 illustrates the DFlow and DField descriptors
for two images of roads, with and without traffic. The
descriptors were computed from histograms of texture-
based features of two images. The DField descriptor
reveals a negative dip, which indicates there is “less”



texture in the non-traffic image, as compared to traffic
image (as one would expect).

2.3 Inter-Class Relationship Characterization

We now come the first scenario in which we wish to
apply our new relationship-based features. In the case
of inter-class relationship characterization, the goal is
to use the DFlow or DField features in order to de-
scribe the relationship between two classes of images.
For illustrative purposes, the reader may imagine one
class to be the class of paintings by Monet, with the
second class the set of paintings by Toulouse-Lautrec.
The claim which is put forward in this paper is that the
relationship between two paintings, one of Monet and
one of Toulouse-Lautrec, may be captured by our new
features. In particular, let A be Monet class, and B the
Toulouse-Lautrec class. The claim is then as follows:
Claim: Suppose we compute the DFlow fAA′

ij between
two images of the same class A, and fAB

ij between two
images of opposite classes A and B. Then fAA′

ij and
fAB
ij will differ significantly. Furthermore, given two

training sets of DFlows, fAA′

ij and fAB
ij , a learning al-

gorithm can learn to classify any new pair as eitherAA′

or AB.
Three comments are in order. First, this claim is an

empirical claim, which is borne out in Section 3. Sec-
ond, one should also include the relationship BB′ in
any actual experiment; we have done so in Section 3,
but have omitted this detail in the above claim, to make
the claim clearer. Third, this claim also applies to the
DField feature.

2.4 Intra-Class Relationship Characteriza-
tion

In this second scenario, we wish to use our DFlow
and DField descriptors to characterize a single class
of objects. How to do this appears less clear than the
prior scenario, as the descriptors are meant to capture
relationships between objects or images. We exploit
this relationship-based approach to characterize feature
points within an object. Based on the presence of these
feature points and accompanying DFlow or DField de-
scriptors, one may then use a standard Bag of Visual
Words [4] approach to perform object recognition.

The feature points and associated descriptors are
computed as follows. An edge detector is run within
the image/region of interest. For each sufficiently strong
edge-response, we place a circle with center at the edge
point, and fixed small radius (e.g. 5-10 pixels). This
circle is partitioned into two even halves using the es-
timated direction of the edge (though other partitioning
methods are possible). For each of the two halves of

the circle, k = 1, 2, a distribution pki may be computed.
The DFlow fij between the two distributions p1i and pj2
is then the descriptor for the feature point. Alternatively,
the DField δi based on the DFlow fij may be used as
the descriptor.

Given a training set on which one has collected the
DFlow or DField descriptors for each feature point, one
may then perform vector quantization on the collection
of descriptors. If the vector quantization is into L possi-
bilities, then each object in the training set is character-
ized by an (unnormalized) histogram of size L, based
on how many of each type of descriptor exists in the
object. This is the Bag of Visual Words approach. Any
standard machine learning method for learning classifi-
cation (e.g. SVM) may then be applied.

3 Applications

In this section we describe two experiments. In the
first experiment, we show the ability of the DFlow and
DField descriptors to characterize inter-class relation-
ships, as described in Section 2.3. We use three different
sets of image class pairs, shown in Figures 1 and 2: (a)
paintings of Toulouse-Lautrec vs. paintings of Monet;
(b) urban vs. rural scenes; (c) roads with and without
traffic. For a given image class pair, the task is as fol-
lows: given a pair of images, we wish to classify them
as either coming from the same class (e.g. urban-urban
or rural-rural), or from opposite classes (e.g. urban-
rural). In this sense, we achieve inter-class relationship
classification.

To determine the effectiveness of the DFlow and
DField descriptors, we compare them with a descrip-
tor which is based on computing the histograms of
the two images, and simply concatenating these his-
tograms. We refer to this descriptor as “Concatenated
Histogram”. In all cases, the image features are Lab
combined with two texture-based features; rather than
using 5-dimensional histograms, we use five separate
1-dimensional histograms for simplicity (and concate-
nate the descriptors). For our classification algorithm,
we use a simple nearest-neighbor scheme (though SVM
or other schemes could easily be substituted), and mea-
sure performance, in terms of the correct detection of
the given relationship class, using leave-one-out valida-
tion.

The results of this experiment are presented in Fig-
ure 3. In each case, DFlow achieves the best perfor-
mance, followed by DField and then Concatenated His-
tograms. In all cases, the gains in performance yielded
by DFlow are impressive: the gain over the Concate-
nated Histogram feature is more than 20% in each case,
and in two cases close to 30%. While DField does not
perform quite as well as DFlow, it is still considerably
better than the Concatenated Histogram.



Figure 2. Examples of pairs of image
classes. Top rows: paintings of Toulouse-
Lautrec (first row) vs. Monet (second
row). Bottom rows: urban (third row) vs.
rural scenes (fourth row).

In the second experiment, we tested the intra-class
object classification of the proposed descriptors, as de-
scribed in Section 2.4. Here, we applied our method
to the problem of identifying skin-tumor-prone freck-
les (the first class) versus normal freckles (the sec-
ond class); see Figure 4. Each image contained one
or several freckles, and for each descriptor we used
a dictionary of 30 Visual Words (with each word be-
ing either a DFlow, DField, or a Concatenated His-
togram). As in the first experiment, we used a leave-
one-out nearest neighbor classifier for simplicity; the
classification accuracies are 80.5%, 80%, and 78% for
DFlow, DField and Concatenated Histograms, respec-
tively. Once again, DFlow performs best, followed by
DField and then Concatenated Histograms; though the
gains are more modest than in the first experiment.

4 Conclusions and Future Directions

We have presented DFlow and DField, two variants
of a new type of feature based on distribution flow
from the Transportation Problem. The proposed fea-
tures were studied in two different applications, namely,
Inter- and Intra-Class Relationship Characterization,
and showed promising results. Future directions include
exploiting the new features in other computer vision ap-
plications, as well as in concert with SVM for poten-
tially better classification performance.
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