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Abstract 

Printers use halftoning to render printed pages. This 
process is useful for many printing technologies which 
are binary in nature, as it allows the printer to deposit 
the ink as series of dots of constant darkness. Indeed, 
many of printing pipelines are based on this 1-bit 
framework; this unfortunately raises a critical problem 
when image processing operations that require the orig-
inal 8-bit image must be performed.  In this situation, 
what is required is the reconstruction of the 8-bit image 
from its halftoned version, a process referred to as "in-
verse halftoning". 

In this paper, we present a technique for fast inverse 
halftoning which given a dithered image together with 
the dithering mask that created it, approximates the 
original 8-bit image. The technique is elegant, and al-
lows for generalizations to other inverse problems in 
which the exact details of the forward process are 
known. The algorithm is light computationally, and has 
been tested in practice. Results are shown, demonstrat-
ing the algorithm’s promise. 

Introduction 

Printers use halftoning to render printed pages. In this 
process, a regular 8-bit image is converted into a 1-bit 
image in such a way that the human eye perceives the 
two images as close to the same. This process is useful 
for many printing technologies which are binary in na-
ture, as it allows the printer to deposit the ink as a series 
of dots of constant darkness. Therefore, it is a common 
practice that the entire printing pipeline is based on this 
1-bit framework. Unfortunately, a critical problem arises 
when image manipulations, which are usually 8-bit in 
nature, are required to be performed at the printer level. 

To perform this compensation properly, it is neces-
sary to reconstruct an 8-bit image from the given 1-bit 
image, a process referred to as "inverse halftoning". 
This is a highly challenging inverse problem; in this 
work, we provide an elegant but fast solution to this 
problem, and present some initial results showing the 
promise of this approach. We also note that our ap-
proach to this problem can be generalized to a larger 
class of inverse problems, in which one knows the exact 
details of the forward process. For halftoning, the ad-

vantages of this approach over existing techniques are 
twofold: speed and the ability to deal with dithered im-
ages (rather than error diffused images), which are most 
relevant for many printing applications. We are hopeful 
that these advantages may be extended to other such 
inverse problems, including compression and tomogra-
phy. 

Problem Statement 

We are given a 1-bit image, 1I  which is the result of a 
dithering process, as follows. For each pixel, the value 
of the original 8-bit image 8I  is thresholded; the thre-
shold value varies by pixel, and depends on the dither 
mask. Wherever the pixel value is bigger than the cor-
responding value in the dither mask, the resulting 1-bit 
value is set to 1. The resulting 1-bit value is set to 0 
wherever the pixel value is lower or equal to the corres-
ponding value in the dither mask. The dithering process 
is illustrated in Figure 2. 

The problem of inverse halftoning is then to go in 
the reverse direction: given the 1-bit image as well as 
the threshold values (as the dithering mask), reconstruct 
an approximation 8Î  to the 8-bit image. Clearly, inverse 
halftoning is highly underdetermined, due to the ex-
treme many-to-one nature of thresholding. The idea is to 
carefully use the redundancy of the image, i.e., that 
neighboring pixels tend to have similar gray values, to 
help solve the inverse problem. 

Previous Work 

In general, there are many proposed solutions to general 
inverse problems, which are quite powerful, such as 
graph cuts [ 1], belief propagation [ 2], and so on; how-
ever, these techniques are typically too slow for the in-
tended application. On a more specific level, there have 
been a variety of efforts in the domain of inverse half-
toning. Some of these [ 3] are aimed at halftones gener-
ated by error-diffusion rather than dithering, while oth-
ers are computationally heavier [ 4] than is practical in 
most applications of interest. 
  



Our Solution 

Collecting Statistics: To compute the 8-bit reconstruc-
tion ( )8Î p , we begin by collecting statistics within a 
fixed window ( )W p  around the pixel p  of interest. We 
focus on statistics which are most related to the process 
of dithering or thresholding. Without a priori knowledge 
about the 8-bit image, the reconstructed 8-bit pixel val-
ue can be taken as a random variable with a uniform 
probability according to the threshold value. This 
means, for each 0 pixel in the 1-bit image, the recon-
structed 8-bit value is uniformly distributed between 0 
and the threshold value. On the other side, for each 1 
pixel, the uniform distribution is between the threshold 
value and 255, as it is presented in Figure 1. We begin 
by computing a histogram of dither values ( )qq  (from 
the dithering mask) within the window, as given by Eq-
uation (1). Now, due to the use of thresholding in form-
ing the 1-bit image, the key statistic to examine is the 
Conditional Expectation Function, described in Equa-
tion (2). This function is simply the average or expecta-
tion of the dither values, conditioned on the fact that the 
dither values are less than a fixed value I ; the function 

1Q  records this expectation for each I . Note that it can 
be simply computed using the histogram, as in Equation 
(2). 
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Regularization: In order to solve the inverse prob-
lem, we need more information; this information comes 
in the form of the "regularization assumption" so com-
mon to inverse problems. Indeed, we use a rather ex-
treme regularization, and assume that the image is con-
stant within the window under consideration; let us refer 
to this constant value as ( )8I p . Now, suppose that we 
compute the empirical average of all dither values with-

in the window, but only for those pixels whose 1-bit 
image value is 1; this quantity *1q is explicitly computed 
in Equation (3). 
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If the number of pixels is large enough, this quanti-
ty should be equal to the Conditional Expectation Func-

Figure 2. The dithering process. Top: Original 8-bit
image. Middle: A dithering mask. Bottom: The 1-bit
dithered image. 

Figure 1: The reconstructed 8-bit value is taken to be a ran-
dom variable with a uniform probability function according to
the mask threshold level and the 1-bit value. 
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tion of Equation (2), evaluated at ( )8I p ; as a result, we 
can invert to get an approximation of the 8-bit image, 
i.e. ( ) ( )1 1 *

8 1 1Î p Q q-º , as in Equation (4). Figure 3 
presents a histogram of a typical dithering cell and its 
corresponding Conditional Expectation Function. 

 ( )( ) ( ) ( )* 1 1 *
1 1 8 8 1 1

ˆq Q I p I p Q q-»  º  (4) 

Finally, note that we have only used the pixels 
whose 1-bit image values are 1. We may do the entire 
process again for those pixels with a 1-bit image value 
of 0. In this case, we let the Conditional Expectation 
Function be ( )0 |Q I E Ié ùº Q Q >ë û , and so on. The 
equation analogous to (4) gives ( )0

8Î p . We combine 
the two estimates for the eight-bit image ( )0

8Î p  and 
( )1
8Î p  as in Equation (5) through a simple weighted 

average, where f0 is the fraction of pixels within the 
window whose 1-bit image values are 0. 

 ( ) ( ) ( ) ( )0 1
8 0 8 0 8
ˆ ˆ ˆ1I p f I p f I pº + -  (5) 

Figure 3. Left: A histogram of a typical dithering cell. Right: 
A conditional expectation function. 

Window Selection: The key issue that arises from 
the previous analysis surrounds the regularization as-
sumption. In particular, there is a tradeoff between the 
accuracy of the procedure and the accuracy of the as-
sumption: for small window sizes, the assumption of 
constant 8-bit value is largely correct, but we do not 
collect enough statistics for the procedure to be accu-
rate; and the reverse is true for large windows. The ef-
fects of varying window sizes may be seen in Figure 4. 
We therefore use the following adaptive window size 
algorithm, based on the fact that we know the details of 
the halftoning procedure. Suppose we have several 
possible window sizes si×si, i = 1…n; for example, 3×3, 
5×5, etc. For each size, we compute the 8-bit recon-
struction at each point, now denoted as ( )8

îI p ; and for 
each such reconstruction, we recompute the halftoned 
image, ( )1

îI p . We then gauge the correctness of a par-
ticular window size by comparing the closeness of 1

îI  to 
the true halftoned image 1I  on a pixel-by-pixel basis. 
There are many ways to do this; we choose to compute, 
for each p , the number of points ( )ig p  in a fixed size 
window around p  at which ( ) ( )1 1

îI p I p= . We then 
take ( )8Î p  to be a weighted sum of the various recon-

structions ( )8
îI p , where the weights are proportional to 

the ( )ig p . 
Generalization to Other Inverse Problems: The 

window selection procedure works because, as noted, 
we know the details of the halftoning procedure. This 
fact differentiates this inverse problem from many oth-
ers, such as noise removal, where we only know a statis-
tical characterization of the forward problem. Thus, 
halftoning is closer, in this sense, to certain problems 
such as decompression from a known compression 
scheme, deterministic deblurring, or tomography; in all 
of these cases, the forward process is understood exact-
ly. 

Figure 4. Effect of the varying window size. From left to right, 
top to bottom: windows size of 3×3, 9×9, 15×15 and 25×25. 
Smaller windows preserve artifacts of the dithering process, 
while larger windows lead to oversmoothing. 

Experimental Results 

The algorithm was implemented in MATLAB, which is 
acceptably fast given the number of matrix operations. 
To test the algorithm, we take an 8-bit image, halftone 
it, and then run our reconstruction algorithm. The results 
are shown in Figure 5 and Figure 6. In the latter, we 
focus on the woman’s eye, to highlight the fact that our 
algorithm retains nearly all of the important details, 
such as the fineness of the eyelashes, and the skin tex-
ture. This is due to the use of the adaptive window sizes. 
For a quantitative comparison, we compute two quanti-
ties: the PSNR of the 8-bit reconstruction is 30.4 dB, 
while the fraction of mistakes in the rehalftoned image 
(i.e. when we halftone 8Î  and compare it with the half-
toned version of 8I ) is 0.3%. 

In contradiction to our basic assumption that an im-
age is constant within a small neighborhood, our me-
thod fails for pure constant images. The main reason for 
this is the existence of higher level moiré artifacts intro-
duced during the forward dithering process. These arti-
facts are emphasized in the inverse approach. A possible 
solution for such a case is to use a large neighborhood 
which will smooth these artifacts out. 

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300
0

20

40

60

80

100

120

u

E
[I

m
]



 

Conclusions 

We presented a fast and elegant approach for the inverse 
problem of image halftoning. The approach can be easi-
ly integrated into a 1-bit pipeline to allow image mani-
pulation at the printer level. We showed that the quality 
of the reconstructed image is visually close to the origi-
nal both on the 8-bit and 1-bit images. 
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Figure 5: Inverse halftoning results. Top to bottom: The
original 8-bit image, the inverse halftone result is very
close to the original. 

Figure 6: Close-up on the eye shows that the important fea-
tures such as eyelashes, eyebrow and skin texture are re-
tained. Top to bottom: original image, reconstructed image.
Left to right: 8-bit and 1-bit images, 


