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a b s t r a c t

Many problems in computer vision can be posed in terms of energy minimization, where the relevant
energy function models the interactions of many pixels. Finding the global or near-global minimum of
such functions tends to be difficult, precisely due to these interactions of large ð> 3Þ numbers of pixels.
In this paper, we derive a set of sufficient conditions under which energies which are functions of discrete
binary variables may be minimized using graph cut techniques. We apply these conditions to the prob-
lem of incorporating shape priors in segmentation. Experimental results demonstrate the validity of this
approach.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in computer vision are posed within a frame-
work of energy minimization. Further, it is often the case that
the energy is a function of discrete variables. This latter situation
may arise naturally, as in the case of a foreground–background seg-
mentation problem where the variables are binary (0 for back-
ground, 1 for foreground); it may also arise by design, as in the
case of optical flow in which the flow vectors are taken to belong
to a discrete set. In either case, there is a need for algorithms which
compute global or near-global minima for such combinatorial
problems. The graph cuts methodology [4,15,16] has proven highly
effective at tackling these types of problems; examples include ste-
reo [14], motion [5], and segmentation [3].

A natural and important question arises: what functions of dis-
crete binary variables can be minimized via graph cuts? The papers
by Kolomogorov and Zabih [15,16] made good headway in attack-
ing this problem. These papers showed necessary and sufficient
conditions for the exact minimization of energy functions where
there are terms depending on pairs of pixels (the so-called F2

class) and where there are terms depending on triples of pixels
(the so-called F3 class). In practice, most research that has applied
the graph cuts methodology has relied on energy functions with
pairwise pixel interactions: the pairwise energies usually capture
a robust smoothness term.

In this paper, we focus on the problem of minimizing discrete
binary energy functions with many pixel interactions. This is an

important problem, as there is a large class of computer vision
problems which feature the interactions of more than three pixels.
For example, many vision problems can be posed in terms of a
Markov Random Field, which is a handy way of capturing the inter-
action of a pixel with its neighbours. Finding a MAP estimate of the
underlying variables is the same as minimizing an energy function
which is minus the log of the MRF; this energy function naturally
has many pixel interactions, as a pixel interacts with all of its
neighbours. A second example pertains to shape modelling; more
on this shortly.

There are two main contributions of this paper. The first is a set
of sufficient conditions for the minimization of discrete binary en-
ergy functions with k-wise pixel interactions. These conditions are
useful, as they allow one to determine whether a given function
may be minimized using graph cut techniques. The second contri-
bution is an application of these techniques to the problem of
shape modelling. In particular, we show how to introduce a type
of shape information into a graph cut style segmentation. This
has long been known to be a difficult, yet important problem.
Our solution is not the final word on this subject, but it does rep-
resent a useful point of departure. Note that while the conditions
for energy minimization were first introduced by the authors in
[10], the shape modelling technique and accompanying results
are entirely new.

The remainder of the paper is organized as follows. In Section 2,
we derive the set of sufficient conditions for the minimization of
energy functions with k-wise pixel interactions. In Section 3, we
introduce a technique for incorporating shape information into
segmentation, and show the results of experiments. Section 4
concludes.
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2. Theory of k-pixel interactions

In this section, we extend the results of Kolmogorov and Zabih
[15,16] on exact minimization of energy functions via graph cuts.
We begin, in Section 2.1, by laying out a useful theorem on the
types of pairwise functions that can be minimized via graph cut
constructions. Using this simple result, the rest of the section is
posed in an entirely algebraic manner, without explicit reference
to graphs. In Section 2.2, we show how the regularity conditions
can be derived very easily in the case of pairwise functions; in
Section 2.3, we use a somewhat longer proof for the triplewise
case. Although both of these results have already been proven in
[15,16], our proofs serve two purposes: they are simplified, purely
algebraic proofs, making them easier to parse; and they show how
these ideas can be generalized to the k-wise case, which we do in
Section 2.4. In Section 2.5, we sketch the graph construction from
which min-cut may be applied to minimize the energy. In Section
2.6, we discuss the relationship of our conditions to the submodu-
larity conditions.

2.1. A useful theorem

We begin by stating a theorem which is very important in the
subsequent work. We note that this theorem is generally consid-
ered to be part of combinatorial optimization folklore, and a ver-
sion of it may be found in [19].

Theorem 1. Let xi 2 f0;1g and let Eðx1; . . . ; xnÞ ¼
P

i;jaijxixj þ L,
where L represents terms that are linear in the xi plus any constants
(i.e. L ¼

P
iaixi þ c). Then E can be minimized via graph cut techniques

if and only if aij 6 0 for all i; j.

Proof. We only prove the ‘‘if” direction; a proof of the ‘‘only if”
direction may be found in [19]. With a little manipulation, such
an E can be rewritten as

E ¼
X

i;j

a0ijxið1� xjÞ þ L0

where a0ij ¼ �aij and the linear term L0 is altered. Ignoring the linear
term L0 for the moment, it is easy to see that minimizing E over the
binary variables xi is the same as finding a minimum cut in a com-
plete graph with n vertices, one vertex corresponding to each xi, and
edge weights given by wij ¼ a0ij. The cut itself splits those vertices
with xi ¼ 0 from those with xi ¼ 1; this is because choosing xi ¼ 1
and xj ¼ 0 adds a0ij to the energy, whereas any other setting of xi

and xj does not add a0ij to the energy.1 It is well known, from the the-
ory of combinatorial optimization [19], that solving min-cut in poly-
nomial time is possible if and only if the edge weights are non-
negative. Thus, we must have that a0ij P 0, so that aij 6 0.

We may now turn to the issue of the linear terms L0. Note that

L0 ¼
X

i

a0ixi þ c0 ¼
X

i:a0
i
P0

a0ixi þ
X

i:a0
i
<0

ja0ijð1� xiÞ þ c00

Thus, we can add such terms into the graph formulation by simply
adding in source (S) and sink (T) nodes, where S corresponds to 0
and T corresponds to 1. In this case, for each i for which a0i P 0,
we add in an edge from the node i to S with weight a0i; and for each
i for which a0i < 0, we add in an edge from the node i to T with
weight ja0ij. All of these weights are non-negative, and thus we
can apply graph cut techniques to optimize in polynomial time. h

2.2. Recasting the F2 case

Before going on to discuss the k-wise case, we will discuss the
simpler pairwise and triplewise cases. Of course, the results for
these cases have already been demonstrated in [15,16]; however,
we use the same approach here as we do for the k-wise case, so
it is worth reviewing these cases. (We also believe that the proofs
presented here, which are purely algebraic, are simpler than those
in [15,16].)

The class of energy functions belonging to F2 includes all those
with pairwise pixel interactions, i.e.

Eðx1; . . . ; xnÞ ¼
X

i

EiðxiÞ þ
X

i;j

Eijðxi; xjÞ ð1Þ

We may now reprove the regularity results of [15,16] very simply
using Theorem 1. Note that we may write

Eijðxi; xjÞ ¼ E00
ij ð1� xiÞð1� xjÞ þ E01

ij ð1� xiÞxj þ E10
ij xið1� xjÞ þ E11

ij xixj

where Eqr
ij ¼ Eijðxi ¼ q; xj ¼ rÞ. Similarly, we may write

EiðxiÞ ¼ E0
i ð1� xiÞ þ E1

i xi

Putting these terms back into Eq. (1) gives

Eðx1; . . . ; xnÞ ¼
X

i;j

E00
ij þ E11

ij � E01
ij � E10

ij

� �
xixj þ L

where again L includes terms that are linear in the xi, as well as any
constants. Applying Theorem 1 says that such an energy can be
minimized via graph cuts if and only if

E00
ij þ E11

ij � E01
ij � E10

ij 6 0 8i; j

which is precisely the regularity condition of [15,16].

2.3. Recasting the F3 case

The class of energy functions belonging to F3 includes all those
with triplewise pixel interactions, i.e.

Eðx1; . . . ; xnÞ ¼
X

i

EiðxiÞ þ
X

i;j

Eijðxi; xjÞ þ
X
i;j;k

Eijkðxi; xj; xkÞ

Before proving any results, let us introduce some notation. Greek
letters, such as a and b, will typically refer to subsets of f1; . . . ;ng.
We define xa to be

Q
‘2ax‘. Also, we let Eijk

b ¼ Eijkðxi ¼ 1; i 2 bÞ.
Let us begin by expanding the function Eijkðxi; xj; xkÞ in a polyno-

mial series:

Eijkðxi; xj; xkÞ ¼
X

a�fi;j;kg
aaxa

To solve for the coefficients of the expansion, aa, we can plug in all
values of the binary variables, leading to eight equations in eight
unknowns. After some algebra, these equations can be solved to
yield

aa ¼
X
b�a
ð�1Þjaj�jbjEijk

b

The function Eijk may therefore be written

Eijkðxi; xj; xkÞ ¼ aijxixj þ aikxixk þ ajkxjxk þ aijkxixjxk þ L

where L is a subquadratic term.
The key step is to convert Eijk, which is an F3 function, into an

F2 function via the introduction of an extra binary variable yijk. In
particular, note that

xixjxk ¼ max
yijk2f0;1g

½ðxi þ xj þ xk � 2Þyijk�

If aijk 6 0, we may write

1 Note that we would usually set a0ji ¼ a0ij , so that xi ¼ 0 and xj ¼ 1 also yields the
same result; this is the distinction between cuts across directed and undirected
graphs.
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aijkxixjxk ¼ min
yijk2f0;1g

½aijkðxi þ xj þ xk � 2Þyijk�

which therefore gives

Eijkðxi; xj; xkÞ ¼ min
yijk

½aijxixj þ aikxixk þ ajkxjxk þ aijkxiyijk þ aijkxjyijk

þ aijkxkyijk þ L�

(L is a modified subquadratic term from the L introduced above.)
Thus, Eijk is written as a pairwise ðF2Þ function, where we have
introduced the extra variable yijk. In fact, we must take the mini-
mum over yijk; however, since the entire function E will ultimately
be minimized, this step simply introduces some extra variables to
minimize over.

Now, what if aijk > 0? In a similar manner to the above, we can
introduce an expansion

Eijk ¼
X

a�fi;j;kg

�aa�xa

where �xi ¼ 1� xi (and following the previous convention,
�xa ¼

Q
‘2a�x‘). It can be shown that

�aa ¼
X
b�a

ð�1Þjaj�jbjEijk
b

where Eijk
b ¼ Eijkðxi ¼ 0; i 2 bÞ. In this case, some inspection shows

that �aijk ¼ �aijk. Therefore, if aijk > 0, then �aijk < 0, and (after some
manipulation) we can write

Eijkðxi; xj; xkÞ ¼ min
yijk

½�aijxixj þ �aikxixk þ �ajkxjxk þ �aijkxiyijk þ �aijkxjyijk

þ �aijkxkyijk þ L�

Note that the variables above are xi and not �xi. This is due to the fact
that

�xi�xj ¼ ð1� xiÞð1� xjÞ ¼ xixj þ linear termþ constant

so that any terms of the form �xi�xj can be effectively replaced by xixj

without affecting the expression (except through the precise forms
of the subquadratic terms, which we do not care about).

Finally, let

ba ¼
aa if aa 6 0;
�aa otherwise:

�
Then we have that

E ¼ min
allyijk

X
i;j;k

½bijxixj þ bikxixk þ bjkxjxk þ bijkxiyijk þ bijkxjyijk

(
þbijkxkyijk þ Lijk�

�
Due to Theorem 1, we can ignore the linear terms Lijk. We also note
that since �aijk ¼ �aijk, we must have that bijk 6 0. Thus, we know
that the terms involving the yijk variables satisfy the conditions of
Theorem 1 (namely, that their coefficients be non-positive). Thus,
we can look at the remainder of the function, i.e.

E0 ¼
X
i;j;k

bijxixj þ bikxixk þ bjkxjxk ¼
X

ij

qijxixj

where qij ¼
P

kbij. In this case, according to Theorem 1, the condi-
tions under which qij 6 0 are identical to the conditions under
which the energy can be minimized via graph cut methods.

Using the expressions for aa and �aa, a little algebra shows that

bij ¼ Eijkð0;0; xkÞ þ Eijkð1;1; xkÞ � Eijkð0;1; xkÞ � Eijkð1; 0; xkÞ

where xk ¼ 0 if bij ¼ aij and xk ¼ 1 otherwise. Thus,

qij ¼
X

k

½Eijkð0;0; xkÞ þ Eijkð1;1; xkÞ � Eijkð0;1; xkÞ � Eijkð1; 0; xkÞ�

ð2Þ

It turns out that the condition that qij 6 0 is precisely the regularity
condition of [15,16]. To see this, let us introduce the notation
x�ij ¼ fx‘g‘–i;j, and

Eproj
ij ðxi; xjÞ ¼ Eðxi; xj; x�ijÞ

where we have assumed the x�ij are fixed, and therefore have sup-
pressed them on the left-hand side. Then

Eproj
ij ð0;0Þ ¼

X
k

Eijkð0;0; xkÞ þ
X

i0–i;j0–j;k0
Ei0j0k0 ðxi0 ; xj0 ; xk0 Þ

The second term does not depend on xi or xj. Thus using Eq. (2),
qij 6 0 becomes

Eproj
ij ð0;0Þ þ Eproj

ij ð1;1Þ � Eproj
ij ð0;1Þ � Eproj

ij ð1;0Þ 6 0

which is exactly the regularity condition of [15,16].

2.4. The generic Fk case

We now come to the most generic case of energy functions with
k-wise pixel interactions, labelled Fk. We may use similar, though
perhaps simpler, arguments as in the case of F3 to establish suffi-
cient conditions for a function in Fk to be minimized via graph cut
methods.

The first step is to realize that any function in Fk can be written
as

Eðx1; . . . ; xnÞ ¼
X

a�f1;...;ng;jaj6k

aaxa ð3Þ

where again xa ¼
Q

‘2ax‘. This fact can easily be proven, though we
do not do so here. As described in Section 2.3, we can solve for the
coefficients aa by means of a linear system of 2k equations in 2k un-
knowns; the result (whose precise derivation is omitted here) is the
same as in the case of F3 functions, i.e.

aa ¼
X
b�a

ð�1Þjaj�jbjEb ð4Þ

The second step is to convert an Fk function to an F2 function
through the introduction of extra variables; this is precisely analo-
gous to what was done in Section 2.3. Note that if jaj > 2

xa ¼ max
ya2f0;1g

X
‘2a

x‘ � ðjaj � 1Þ
 !

ya

" #

where ya is the extra binary variable. If aa 6 0, we may write

aaxa ¼ min
ya2f0;1g

aa

X
‘2a

x‘ � ðjaj � 1Þ
 !

ya

" #
ð5Þ

The final step is to use the above fact to note that if aa 6 0 for all a,
we can combine Eqs. (3) and (5) to yield

Eðx1; . . . ;xnÞ ¼ Lþ
X

i;j

aijxixjþ
X

a:jaj>2

min
ya2f0;1g

aa

X
‘2a

x‘�ðjaj�1Þ
 !

ya

" #

where as usual, L represents linear terms and the constant. Thus, the
minimization of E can be rewritten as follows:

min
xi

EðxiÞ ¼min
xi ;ya

eEðxi; yaÞ ð6Þ

whereeEðxi; yaÞ ¼
X

a:jaj>2

X
‘2a

aax‘ya þ
X

i;j

aijxixj þ L ð7Þ

We can apply Theorem 1 to this function to discover that E can be
minimized by graph cut techniques if
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aa 6 0 8a : 2 6 jaj 6 k

Plugging in the expression for aa from Eq. (4) leads to the following
sufficient conditions for minimization of E via graph cut methods:X
b�a
ð�1Þjaj�jbjEb 6 0 8a : 2 6 jaj 6 k ð8Þ

where as before Eb ¼ Eðxi ¼ 1; i 2 bÞ. The inequalities of (8) repre-
sent the main result of this section of the paper.

2.4.1. Relationship of condition (8) to the k ¼ 2 and k ¼ 3 cases
We have used similar arguments, in particular auxiliary vari-

ables, to generate the conditions for the general k case as we did
for the k ¼ 2 and k ¼ 3 cases. In the case of k ¼ 2, the conditions
in (8) reduce precisely the regularity conditions of [15,16]. To see
this, expand (8) for k ¼ 2; note that jaj ¼ 2, so that we have all
a’s are sets of the form fi; jg. For a specific a ¼ fi; jg, we have that
the lefthand side of (8) becomesX
b�fi;jg

ð�1Þ2�jbjEb ¼ E; � Efig � Efjg þ Efi;jg

¼ Eijð0;0Þ � Eijð1;0Þ � Eijð0;1Þ þ Eijð1;1Þ

thus yielding the regularity conditions of [15,16].
The case k ¼ 3 is somewhat different: the condition (8) will not

reduce to the k ¼ 3 version of the regularity conditions. The reason
is that we invoke an extra argument in Section 2.3 for the case of
F3, to eliminate the condition that aa 6 0 for jaj ¼ 3. Why not
use this extra argument in the general case? Such an argument re-
lied on the fact that an expansion could also be performed on the �xi

variables, where �xi ¼ 1� xi; it was then shown that �aa ¼ �aa for
jaj ¼ 3, so that in this case either aa 6 0 or �aa 6 0. Unfortunately,
this is not true for k > 3; indeed, for k ¼ 4 we have that �aa ¼ aa.

2.5. Sketch of graph construction

Thus far, we have derived sufficient conditions to minimize
energies in the general Fk class. However, sufficient conditions
do not constitute an algorithm. Fortunately, implicit in the deriva-
tions is the information required to construct the graph whose
minimum cut yields the minimum of the desired energy function.
In this section, we will sketch the means by which the relevant
graph may be constructed.

First, let us return to the proof of Theorem 1. In this theorem, we
treated the problem of optimizing an energy function of binary
variables, where the function contains pairwise and singleton
interactions. We showed, in proving the theorem, how to construct
a graph whose minimum cut yields the minimum of the relevant
energy. To wit, suppose that the energy is Eðx1; . . . ; xnÞ ¼

P
i;jaijxixj

þ
P

iaixi þ C. Then as we showed in the proof of the theorem, we
can rewrite

E ¼
X

i;j

aijxixj þ
X

i

aixi þ C

¼
X

i;j

�aijxið1� xjÞ þ
X

i

X
j

aij

 !
xi þ

X
i

aixi þ C

¼
X

i;j

�aijxið1� xjÞ þ
X

i

bixi þ C

¼
X

i;j

�aijxið1� xjÞ þ
X

i:biP0

bixi þ
X

i:bi<0

jbijð1� xiÞ þ C 0

where bi ¼ ai þ
P

jaij and C0 ¼ C �
P

i:bi<0jbij. In order to minimize
this latter expression, one builds a graph with nþ 2 nodes: a node
corresponding to each variable, plus source S and sink T nodes cor-
responding to 0 and 1 respectively. The weights are then as follows
(as explained in the proof of the theorem): a weight of �aij is placed

on the edge running from node i to node j; a weight of bi is placed
on the edge between i and S, if bi > 0; and a weight of jbij is placed
on the edge between i and T, if bi < 0. If aij 6 0, as is the case in all of
our constructions, then the graph has entirely positive weights, and
the energy may be minimized by finding the minimum cut of the
graph so constructed.

Now, let us return to the case of Fk energies. In Eqs. (6) and (7),
we show that the minimization of E may be written as the minimi-
zation of an energy with only pairwise and singleton terms,
through the use of auxiliary variables; that is

min
xi

EðxiÞ ¼min
xi ;ya

eEðxi; yaÞ

where

eEðxi; yaÞ ¼
X

a:jaj>2

X
‘2a

aax‘ya þ
X

i;j

aijxixj þ L

(For the precise meaning of notation, the reader is urged to return to
the discussion in Section 2.4.) But the foregoing discussion tells us
precisely how to construct a graph whose minimum cut yields
the minimum of such an energy (i.e., one with only pairwise and
singleton terms). By applying this logic to the energy in question,
it is straightforward to construct the relevant graph.

2.6. Submodularity

A well known fact from the theory of combinatorial optimiza-
tion is that the class of submodular functions can be optimized
in polynomial time [18]. This fact was noted in [16] (though not
[15]), but we wish to add some further discussion of these func-
tions here.

Suppose S is a set with n elements. If we denote by 2S the power
set of S, then a set-valued function f : 2S ! R is said to be submod-
ular if

f ðX \ YÞ þ f ðX [ YÞ 6 f ðXÞ þ f ðYÞ8 X; Y � S

One can, of course, easily move from set-valued functions to binary-
valued functions, by letting inclusion of element i in a set
correspond to xi ¼ 1, and exclusion to xi ¼ 0. We wish to make
two comments regarding the relationship between submodularity
and the conditions described here:

1. The relationship between the conditions for Fk derived in (8)
and submodularity is unknown, but the conditions are not the
same. This can be clearly seen from the fact that the submodu-
larity conditions always involve exactly four terms, whereas the
inequalities in (8) can involve more.

2. It is not obvious from inspection as to how to specialize the sub-
modularity conditions to classes of functions like Fk; these
conditions will look the same, no matter how many pixel are
allowed to interact. (Of course, the number of such conditions
applying may decrease, but the way in which this takes place
is also not obvious from inspection.) The new conditions, by
contrast, relate to precisely the function classes Fk which are
relevant for computer vision; in many vision applications, the
number of interacting pixels k is fixed. Thus, from a computer
vision point-of-view, these conditions are important. For exam-
ple, it is clear from the inequalities of (8) precisely which new
inequalities get added as k increases.

Note that the results derived here bear a relationship to those
from the pseudo-boolean optimization literature, see for example
[1].
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3. Introducing shape modelling into graph cuts

In this section, we will see how to apply the formalism from
Section 2 to the modelling of shape. In particular, we are interested
in the problem of introducing shape priors into segmentation algo-
rithms. Segmentation has a rich history of being treated as combi-
natorial optimization problem, beginning with the work of Greig
et al. [13]. We will begin our investigation in Section 3.1 by review-
ing the segmentation algorithm of Boykov and Jolly [2]. In Section
3.2, we turn to the problem of formulating a shape prior term using
the theory we have developed in Section 2. This term is then added
to the Boykov–Jolly energy function, and experimental results of
using the shape prior are shown in Section 3.3.

Note that the problem of introducing shape modelling and pri-
ors into segmentation has been well researched, and many practi-
cal and useful techniques already exist. Examples include
[6,8,9,7,12,20]. Many of these methods are based on continuous
optimization techniques, such as gradient descent, which com-
monly translate into geometric partial differential equations (i.e.,
curve evolutions). Due to the fact that the optimum sought is only
local, there are generally little or no restrictions on the form of the
objective function. As a result, the objective functions tend to more
accurately capture the problem of shape modelling in segmenta-
tion than the objective function we introduce below. This, then,
is the main advantage of most existing methods compared to the
proposed method: more accurate objective functions.

Our contribution, then, should be seen for what it is: a way of
framing the shape modelling in segmentation problem which admits
a global optimization technique. As we have noted, other methods of-
ten work quite well in practice, despite the fact that they rely on local
optimization. However, we believe that global optimization – when
possible – is always preferable to local optimization, and that the
proposed method should be seen as a first step in that direction.

3.1. A graph cut approach to segmentation

Boykov and Jolly [2] introduced a novel interactive method for
segmentation. The idea is as follows: the user marks some pixels
as being part of the object of interest, and some as lying outside
the object i.e. within the background. Given these constraints,
the algorithm tries to find the optimal segmentation such that
these hard constraints are satisfied. In particular, a segmentation
is scored according to the following criteria:

1. Each pixel inside the object is given a value according to
whether its intensity matches the object’s appearance model;
low values represent better matches.

2. Each pixel in the background is given a value according to
whether its intensity matches the appearance model of the
background; low values represent better matches.

3. A pair of adjacent pixels, where one is inside the object and the
other is outside, is given a value according to whether the two
pixels have similar intensities; low values correspond to con-
trasting intensities (i.e. to an edge).

Note that the appearance models can be learned a priori, or they
can be learned by examining the points selected by the user as
hard constraints.

These considerations may be formalized into the following en-
ergy function:

E ¼
X
p2P

RpðxpÞ þ
X
ðp;qÞ2N

Bpqðxp; xqÞ ¼
X
p2P
½� log PbðIpÞð1� xpÞ

� log PoðIpÞxp� þ k
X
ðp;qÞ2N

e�ðIp�IqÞ2=2r2

kp� qk ½xpð1� xqÞ þ ð1� xpÞxq�

where Ip is the intensity at pixel p; Pb is the background probability
model; Po is the object (foreground) probability model; and N is
the set of neighbouring pixels. The form of this energy function is
easily seen to satisfy the conditions of Theorem 1, so a straightfor-
ward application of minimum cut may be applied to globally min-
imize E.

3.2. The shape prior

The Boykov–Jolly energy is most effective when the user pro-
vides good foreground and background seeds; these hard con-
straints then guide the segmentation. We now introduce a
modification to this energy, in which no user intervention is re-
quired. Instead, the segmentation is guided by a shape model. Note
that despite the existence of prior work which attempts to recon-
cile shape priors with a graph cut formalism, such as [11,17], this
reconciliation is still considered an open problem. This is due to
the fact that these prior approaches generally have a kind of
‘‘hybrid” structure: one part graph cuts, one part something else
(usually some other kind of optimization). In what follows, we
try to formulate the problem entirely within a graph cuts
framework.

The new energy function may be written

E ¼
X
ðp;qÞ2N

Bpqðxp; xqÞ þ KEshape

i.e., the boundary term from the Boykov–Jolly energy, along with a
new shape term. Let us fix some notation. Let x � P be a region of
the image plane; a shape is specified by such an x, i.e., we take a
shape to be not just the boundary of an object, but the entire object
including its interior. A shape library is then a collection X ¼ fxg of
such shapes. In this case, we may write the shape energy as

Eshape ¼ �
X
x2X

Cx

Y
p2x

xp

where Cx is a constant for each shape, whose value we discuss
shortly. The shape energy rewards the selection of all pixels in a
particular shape x with a reduction in the energy equal to �KCx.

A natural question arises. Suppose that x1 and x2 are both
shapes in the shape library X. What is to prevent us from selecting
the foreground to consist of x1 [x2? Such a choice would yield a
reduction in energy equal to �KðCx1 þ Cx2 Þ, so it may be energet-
ically advantageous to make this choice. However, we would very

Fig. 1. Segmenting airplanes in clutter. Left column: original images. Middle
column: segmentation without shape information. Right column: segmentation
with shape information.
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much like to avoid this choice, as the union of the two shapes is not
a shape in the library – and in most cases looks nothing like the
shape prior at all. To avoid this choice, we write Cx as

Cx ¼
1 jfp 2 x : PoðIpÞP PbðIpÞgjP /jxj;
0 otherwise:

�
where 0 6 / 6 1 is a parameter to be chosen. The concept here is
the following: if a region is such that the pixels in its interior satisfy
the object appearance model, then the set fp 2 x : PoðIpÞP PbðIpÞg
should form a large fraction of the entire region x. (For concrete-
ness, one may imagine / � 0:6, i.e. 60% of the pixels must match
the object appearance model.) In this case, we set Cx ¼ 1, and
choosing x leads to a reduction in energy of �K. If this is not the
case – i.e., if most of the pixels within x do not really match the ob-
ject appearance model well – then Cx ¼ 0, so that choosing x does
not lead to any decrease in the energy. Therefore, it is only energet-
ically favourable to choose regions whose interiors match the object
appearance model, which means that the above scenario, in which
two overlapping regions are chosen, is unlikely to happen.

There is another natural question: why is the region term from
the Boykov–Jolly energy left out in our new formulation? That is,
our proposed energy function contains only the boundary term from
the Boykov–Jolly energy, as well as the new shape prior term, but the
region term from Boykov–Jolly is missing. The reason for this is
straightforward: in formulating the shape weights Cx, we have
effectively included the region term of Boykov–Jolly within the shape
prior. That is, unless the shape x matches the object model, given by
the distribution Po, to a strong enough extent – i.e., at least a fraction
/ of the pixels within x must match the object model better than
they match the background model – then adding the shape x into
the segmentation does not lower the energy function at all. Thus,
the region term is effectively captured by the shape priors.

Finally, one may wonder what is to prevent the segmentation
from choosing the union of all of the shapes x with positive Cx

in the shape library? The answer, of course, is the boundary term;
adding all of these shapes would likely lead to a high boundary
cost, as the boundary would not correspond to a high contrast con-
tour.2 The boundary term plays a similar role in the Boykov–Jolly en-
ergy, particularly when no good background model is available.

Clearly, the new energy function has multi-pixel interactions,
where the number of pixels in the relevant terms may easily be
on the order of hundreds or thousands. However, it is not hard to
verify that the new energy function satisfies the conditions of Eq.
(8). Indeed, each region requires the introduction of exactly one
extra variable, as in Eq. (5).

3.3. Experimental results

To demonstrate the validity of the approach described in Section
3.2, we have tested the algorithm on two sets of data. The first set
consists of synthetic binary images which have been corrupted by
Gaussian noise. The images contain both airplanes and fish; our goal

is to segment the airplanes. Note that in addition to the Gaussian
noise, the images contain an extra source of noise: the airplanes have
fairly large holes. The set X consists of airplanes in various positions
and orientations scattered throughout the image; we take / ¼ 0:55.
The left column of Fig. 1 shows the original images; the middle
column the results of segmentation using Boykov–Jolly; and the
right column the result of using the new energy with shape priors.
As one would expect, the Boykov–Jolly segmentation, which does
not use shape information, does not distinguish between planes
and fish; by contrast, the segmentation using shape information suc-
cessfully finds only the planes. Furthermore, by using the shape
information, the segmentation is able to fill in the holes in the planes,
as well as deal more successfully with the Gaussian noise.

Our second set of data consists of standard grayscale images. In
each case, the image has an ‘‘obvious” foreground object superim-
posed on the background. Once again, the set X consists of the rel-
evant object in various positions and orientations scattered
throughout the image. Results are shown in Fig. 2. Although the
segmentations are not perfect, they are generally quite good.

4. Conclusions

In this paper, we have contributed a set of sufficient conditions
for the application of graph cut techniques to the minimization of
discrete binary energy functions with k-wise pixel interactions. We
have used these sufficient conditions to design an energy function
which incorporates shape information into segmentation. Experi-
mental results have shown the promise of this approach. A key
direction for future research involves determining the applicability
of the sufficient conditions to other energy functions of interest,
such as those related to MRFs.
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