
Reality Skins: Creating Immersive and Tactile Virtual Environments
Lior Shapira∗

Google Machine Intelligence, Seattle WA, USA
Daniel Freedman†

Microsoft Research, Haifa IL

Figure 1: (a) We scan and process the surrounding environment (b) We populate the scene with different objects from a specialized data-set,
and optimize to find the best combined layout (c) We detect planar areas and infer a complete floor-plan (d) We combine the floor-plan and object
layout, creating a Reality Skin, a large scale, dynamic and tactile VR experience (e) Each scene can be transformed into a variety of worlds,
such as this space station.

ABSTRACT

Reality Skins enables mobile and large-scale virtual reality expe-
riences, dynamically generated based on the user’s environment. A
head-mounted display (HMD) coupled with a depth camera is used
to scan the user’s surroundings: reconstruct geometry, infer floor
plans, and detect objects and obstacles. From these elements we
generate a Reality Skin, a 3D environment which replaces office
or apartment walls with the corridors of a spaceship or underground
tunnels, replacing chairs and desks, sofas and beds with crates and
computer consoles, fungi and crumbling ancient statues. The place-
ment of walls, furniture and objects in the Reality Skin attempts
to approximate reality, such that the user can move around, and
touch virtual objects with tactile feedback from real objects. Each
possible reality skins world consists of objects, materials and cus-
tom scripts. Taking cues from the user’s surroundings, we create
a unique environment combining these building blocks, attempting
to preserve the geometry and semantics of the real world.
We tackle 3D environment generation as a constraint satisfaction
problem, and break it into two parts: First, we use a Markov Chain
Monte-Carlo optimization, over a simple 2D polygonal model, to
infer the layout of the environment (the structure of the virtual
world). Then, we populate the world with various objects and char-
acters, attempting to satisfy geometric (virtual objects should align
with objects in the environment), semantic (a virtual chair aligns
with a real one), physical (avoid collisions, maintain stability) and

∗e-mail: liorshap@google.com
†e-mail:danifree@microsoft.com

other constraints. We find a discrete set of transformations for
each object satisfying unary constraints, incorporate pairwise and
higher-order constraints, and optimize globally using a very recent
technique based on semidefinite relaxation.

Index Terms: H.5.1 [Multimedia Information Systems]: Artifi-
cial, Augmented and Virtual Realities—; I.3.7 [Three Dimensional
Graphics and Realism]: Virtual Reality— [G.1.6]: Optimization—
Constrained Optimization

1 INTRODUCTION

When a user dons a head-mounted display (HMD) to immerse her-
self in a virtual reality (VR) environment, she becomes isolated
from her surroundings. In order for the VR experience to be safe
and immersive, she must be able to interact with the virtual world
without fear of bumping into unseen obstacles. The simplest solu-
tion would be to remain seated (immobile), and use a controller to
move within the simulation. This solution however, limits the type
of experiences, and is often more prone to causing nausea [30].
Being able to physically walk in a virtual environment increases
immersion and reduces discomfort, but increases the challenge of
providing a safe experience. A common solution is to cordon off
a safe area, whose boundaries are known, and is guaranteed to be
empty of obstacles [15]. If the user approaches the boundaries, she
can be visually or audibly warned. This approach requires a large
empty space, and precludes the possibility of large-scale mobile
exploration with VR (barring methods such as redirected walking
which are still limited).
We propose to use an HMD integrated with a depth sensor.
The easy availability of consumer-grade depth sensors such as
Kinect [21] or Structure [23] makes such integration easy. These
sensors can scan and reconstruct the user’s environment, as well as

track his position and orientation. With such a device we no longer
need to rely on static VR experiences, designed beforehand and
forced to fit the user’s surroundings. Instead, we create a dynamic
large-scale virtual environment, which approximates the geometric
and semantic properties of the real environment. In such a virtual
world, any position which a user can reach is clear in the real world;
any table on which the user may lean, provides support in the real
world.
A Reality Skin (RS) is a dynamically created 3D environment con-
sisting of an enclosed space (the “level” in game terms), populated
and furnished with objects, to approximate the layout of a real envi-
ronment. The virtual environment can appear to be the stark corri-
dors of a space station, the gloomy exam rooms of an abandoned
hospital complete with gurneys, exam beds and zombies, or the
fungi-filled caverns of a fantasy world. An RS is created using
a blueprint, which we call a Reality Skins World (RSW). Each
RSW is created by a designer, containing instructions on how to
transform 2D floor-plans into corridors and rooms, and how to pop-
ulate the virtual world with objects and game elements. The RSW
contains attributes and constraints which help guide the optimiza-
tion process generating the RS.
For a given environment we process the scanned geometry to create
a floor-plan. The floor-plan is based on the observed walls and floor
area, but is constrained to be closed and complete. We then extract
feature-vectors for each voxel in a volume-based representation of
the environment. The generation of an RS should be fast (a few
seconds at most), as the user is walking with a headset on, ready to
engage in the experience; therefore we construct features which are
quick to compute and compare.
To generate a Reality Skin for the user’s environment we (i) use
the inferred floor-plan and the RSW to construct the floors, walls
and ceiling, the general structure of the virtual world. (ii) Pop-
ulate the virtual world with a set of objects from the RSW. The
solution space for a set of objects satisfying a large set of unary,
pairwise and higher-order constraints is a extremely large. Since
many of our constraints are unary constraints – that is, the match-
ing of each object to the environment – we first find, for each object
in the RSW, a list of candidate transformations into the scene. We
refer to these candidate transformations as modes. An object’s at-
tributes and constraints drive this process; for example, it might be
the case that an object may only be placed on the floor, or with
its back to a wall. Most important though, is the geometric match
of an object to the real world, such that when the user reaches out
to touch a virtual surface, it will have a parallel in the real world.
From the list of modes of all objects, we aim to find a subset that
minimizes an objective function. The constraints embedded in the
function take into account unary constraints (already calculated for
each mode), as well as pairwise (e.g. avoid collision) and higher-
level constraints (e.g. limit the number of instances for a specific
object). The problem can posed as a non-convex integer quadratic
program, which is then solved by relaxing the problem to a (convex)
semidefinite program, and using an appropriate rounding scheme;
this technique is based on the state of the art Concave Quadratic
Cuts algorithm described in [27].
Our contributions are a declarative framework for designing dy-
namic VR experiences, and the algorithms required to turn those
blueprints into (virtual) reality, adapting them to fit a real world en-
vironment which the user can engage. Designing an RSW in our
system is a simple and straight-forward process, which we have
integrated into a popular game creation engine. Scanning an envi-
ronment and generating a Reality Skin takes seconds on any device
equipped with a modern GPU.
The rest of the paper is organized as follows: In Section 2 we dis-
cuss related work. In Section 3 we discuss scanning and processing
the user’s environment. In Sections 4 and 5 we discuss the design
of an RSW, and how from an RSW we generate a Reality Skin, a

Figure 2: We use different devices to capture home and office en-
vironments for Reality Skins: (a) Kinect [21] camera with KinectFu-
sion [17] (b) Structure camera [23] with KinectFusion [17] (c) Google
Tango [11] (d) RGBD sequences from Sun3D [38], captured with an
Asus Xtion camera and reconstructed with [4]. Overall we have cap-
tured over 100 different environments.

complete virtual world. In Section 6 we discuss technical details of
our implementation and show results. Finally, in Section 7 we draw
conclusions, discuss limitations, and outline possible future work.

2 RELATED WORK

The availability of 3D models has inspired a large amount of work
on generating layouts. In [40, 20] a set of rules and spatial re-
lationships for optimal furniture positioning are established from
examples and expert-based design guidelines. These rules are en-
forced to generate furniture layout in a new room. Yu et al [40] em-
ployed a simulated annealing method which is effective but takes
several minutes, while Merrell et al [20] sample a density function
using the Metropolis-Hastings algorithm implemented on a GPU.
They evaluate a large number of assignments and achieve interac-
tive rates (requiring a strong GPU). Both papers work with a small
number of objects in relatively small rooms and in static scenar-
ios. Fisher et al [7] showed how arrangements of 3D objects can be
found using a data-driven example based approach. Yeh et al [39]
populate a scene with a variable number of objects (open universe).
They present a probabilistic inference algorithm extending simu-
lated annealing with local steps, however the computation cost is
high. FLARE is a rule-based framework for generating objects for
augmented reality (AR) applications by Shapira et al [9]. In our
work the layout of objects is heavily constrained by the captured
scene (represented by unary constraints), the dimensionality of the
solution space is not fixed (similar to [39]), and there is need for
interactive computation times, in which one good solution must be
computed.
Most of the papers cited above use Markov Chain Monte-Carlo
(MCMC) methods [14] to traverse a large multi-modal solution
space. The prohibitive size of the solution space in our case, and
the constraints of the environment necessitate a different sort of
solution technique. The Concave Quadratic Cuts [27] method is
very recent, but is in the spirit of various other semidefinite relax-
ation techniques for integer programming problems, for example
[10, 26]. Such convex programs can be solved using fast modern
techniques, such as the alternating direction method of multipliers
(ADMM) [1, 25].
When acquiring a geometric representation of the user’s environ-
ment, we infer a floor-plan, which guides the generation and the
layout of the Reality Skin. Mura et al [22] take as input multiple
point clouds acquired by a mobile scanner with known positions,

and build a 2.5D layout of the scanned area complete with room
segmentation. They do so by detecting candidate walls (vertical
planar patches), and creating a 2D cell complex, from which they
infer the layout by diffusion. With similar requirements, Turner et
al [34] partition space into interior and exterior domains, where the
interior represents all open space in the environment. The input
samples define the volumetric representation via a Delauney trian-
gulation. Each triangle is labeled interior/exterior based on line-of-
sight of each wall sample. A final model is constructed by using the
boundaries between interior and exterior, and simplifying. In this
paper we process a single point cloud, often noisy and with many
occlusions. Oesau et al [24] support multi-story reconstructions by
detecting vertical peaks in the scanned points distribution, used to
find horizontal structure. They employ multi-scale line fitting to
find vertical wall candidates. Finally, a graph-cut formulation is
used to extract the final structure. Furukawa et al [8] reconstruct ar-
chitectural scenes using structure-from-motion, multi-view stereo
and a Manhattan-world assumption. They produce a simplified 3D
model used for exploration of the reconstructed environments us-
ing an image based 3D viewer. Ikehata et al [16] reconstruct a
grammar-based structured model of an indoor scene from panorama
RGBD images. Our parametric floor-plan model side-steps the dis-
cretization and alignment issues of graph-cut and is more flexible
as a template for a new floor-plan (which might differ in geometry
and not only texture). Still, our RS algorithm may use any system
for floor-plan inference.
Detecting and classifying objects in the scanned scene adds a layer
of semantic understanding, which can help guide the generation of
the Reality Skin, and enable semantic constraints. Our system can
work with different approaches, such as Salas-Moreno et al [28]
which integrate 3D object matching into their dense reconstruction
(SLAM) pipeline. An interactive approach is used by [37, 36], with
a user in-the-loop to annotate parts of the scene. Finally, unsuper-
vised methods of object detection and classification have prolifer-
ated in images, RGBD frames, and 3D environments. We integrate
the work of Litany et al [19] which detects 10 common object cat-
egories, and finds a closest matching exemplar from a 3D object
dataset, into the scene.
Several works in the past have incorporated real world objects
into virtual and augmented experiences. RoomAlive [18] is a
projection-mapped experience which takes into account room ge-
ometry to create interactive games. The user can interact with vir-
tual objects and creatures physically e.g. stepping on a virtual bug.
However, they are constrained to a single prepared room and per-
form specific augmentations on that room. A recent demo [2] shows
a crafted VR experience in which users explore an ancient tomb,
whose layout matches that of a prepared area, and holding a torch
(a physical object). Our work offers a framework in which a de-
signer can create anything he imagines, and a 3D environment is
generated to match any layout. Simeone et al [33] present a study
on modeling virtual environments based on real ones. They focus
on the mismatch between virtual and physical objects, and how it
affects user experience. The environments presented in that paper
were manually constructed to match specific rooms, whereas our
work offers a complete pipeline for generating a virtual environ-
ment.

3 SCENE UNDERSTANDING

In order to create a VR experience in which a user can walk around
any room, home or office, in a safe and engaging manner, we scan
and process the surrounding environment. We’ve used different de-
vices (Kinect [21], Structure [23], Tango [11]), all capable of cap-
turing depth frames and integrating them together into a volumetric
representation of the scene (figure 2). We are able to use any device
that is able to export a triangular mesh or point cloud of the scene,
with a generalized up direction. Given a scanned environment we

Figure 3: Inferring floor-plan for a scene: (a) We scan a large residen-
tial building lobby, and identify major planes (b) An iterative MCMC
optimizes a simple floor-plan which adheres to detected walls (visual-
ized as colored lines), covers the observed floor (visualized as brown
poly-line) and prefers right angles and parallel walls (c) We extrude
the detected floor-plan to create a water-tight 3D environment for Re-
ality Skins (d) Additional examples.

perform the following steps:

1. Identify and classify the planar areas.

2. Infer a complete floor plan.

3. In a volume-based representation of the scene, compute a
feature-vector for each voxel.

3.1 Plane Identification and Classification
We identify the dominant planes from the reconstruction of the
environment using a greedy strategy, similar to [32]. First, using
the Hough transform [5] we select a finite set of candidate planes.
Each 3D point and its surface normal vote for a plane equation
parametrized by its azimuth, elevation and distance from the ori-
gin. Each of these votes is accrued in an accumulator matrix of size
A×E×D where A is the number of azimuth bins, E is the number
of elevation bins and D is the number of distance bins 1. After each
point has voted, we run non-maximal suppression to avoid accept-
ing multiple planes that are too similar.
Once we have a set of candidate planes we sort them in descend-
ing order by the number of votes they have received and iteratively
associate points to each plane. A point can be associated to a plane

1We use A=128, E=64 and D is found dynamically by spacing bin edges
of size 5cm apart between the max and minimum points

if it has not been previously associated to any other plane and if
its planar disparity and local surface normal difference are small
enough 2. As an additional heuristic, each new plane and its associ-
ated points are broken into a set of connected components ensuring
that planes are locally connected (e.g. two identical coffee tables
in a room will produce a single plane equation, but two separate
components).
Once we have a set of planes, we classify each one independently
into one of four semantic classes: Floor, Wall, Ceiling and In-
ternal. To do so, we train a Random Forest Classifier to pre-
dict each plane’s class using the ground truth labels and 3D fea-
tures from [31], which capture attributes of each plane including
its height in the room, size and surface normal distribution. Planes
classified as one of Floor, Wall and Ceiling will be used for infer-
ring the floor plan.

3.2 Floor Plan Inference
The set of planes extracted and classified in the previous section
often form an incomplete floor-plan due to limited view-points, oc-
clusions and errors in reconstruction. We aim to find a plausible and
complete floor-plan, which fits the observed data and from which
we can construct the layout of the Reality Skin.
We model a floor-plan as a pair (ϕ,ω), where ϕ = (p1, ...pn), pi ∈
IR2, a set of points which form a closed polygon (the ”exterior
walls”) and ω =

{
wa

1,w
b
1), ...(w

a
m,w

b
m)
}
,w j

i ∈ IR2, a set of internal
walls represented as points pairs3.
We project all points from the scanned point cloud onto the
floor plane, and find a concave hull [6] encompassing the points
and representing the rough shape of the scene ϕ̂ = (r1, ...rk).
We define the set of observed planes classified as walls ω̂ ={

owa
1,owb

1), ...(owa
t ,owb

t)
}

.
We define an objective function C : (Φ,Ω)→ IR where ϕ ∈ Φ is a
closed polygon, ω ∈Ω is a set of point pairs such that C =Cwalls +
Cangles +Cparallel +Coverlap. C evaluates how well the proposed
floor plan (ϕ,ω) matches the scanned environment (ϕ̂, ω̂). The
sub-functions are defined as follows4:

Cwalls is an objective function based on the number of walls
in the suggested configuration. We compare that to the number of
walls observed in the real scene, penalizing too many or too little
walls Cwalls = abs((|ϕ|+ |ω|)− (|ϕ̂|+ |ω̂)).

Cangles is an objective function favoring right angles between
adjacent walls. It is defined as Cangles = ∑(−−→pi+1 •−→pi) where −→pi is
the normal of the wall between pi and pi+1 (where pn+1 = p1).

Cparallel is an objective function where for each wall w ∈
(ϕ,ω) (external or internal wall) we search a parallel wall (op-
posing normal) up to a deviation of 10 degrees. It is defined as
Cparallel = ∑ parallel(−→w) where parallel ∈ [0,1] is equal 0 if a
parallel wall exists and 1 if the closest to parallel wall deviates by
more than 10 degrees.

Coverlap is an objective functions which compares the floor area
of the proposed configuration vs. the observed environment. It
favors containing the observed environment, but without too much
expansion. It is defined as Coverlap = 1−∩(ϕ, ϕ̂)/∪ (ϕ, ϕ̂).
We minimize C using the Metropolis-Hastings algorithm [14, 3].
From a configuration FFF = (ϕ,ω) we sample a modified configu-
ration FFF∗ using one of the following moves (selected with equal
probability):

2Planar disparity threshold=.1, angular disparity threshold = .1
3Internal walls occur when there are thin dividers in the room which are

not scanned as two separate walls, in practice these rarely occur.
4C functions are weighted as follows: wwalls = 2.0,wangles =

1.0,wparallel = 2.0,woverlap = 2.0

1. Translate a random point in (ϕ,ω) (i.e. a point on the closed
polygon or one of the ends of an interior wall).

2. Delete a point in ϕ .

3. Split a wall (in either ϕ or ω).

4. Add a new random interior wall.

Acceptance of the proposed move and new configuration FFF∗ is de-
rived from the Metropolis-Hastings algorithm’s acceptance proba-
bility

α(FFF → FFF∗) = min
(

1,
{

p(F∗)q(F |F∗)
p(F)q(F∗|F)

})
where q(F |F∗) is the proposal distribution from which a new con-
figuration F∗ is sampled given current configuration F . p(F) is a
probability function defined as

p(F) =
1
Z

exp(−βC(F))

where Z is a normalizing factor and β is a temperature constant
which is ’cooled’ over the iterations, favoring large moves in the
beginning and smaller moves as the optimization converges. We
run multiple MCMC threads in parallel, retaining the configuration
with the lowest score. A visualization of the process and some re-
sults can be seen in figure 3.

Figure 4: Extracting features: (a) We calculate feature vectors for
each voxel (cell) in an object or scene. (b) Occupancy is a normalized
count of points within each cell, visualized here from blue to red (c,d)
We extract a normal response histogram for each cell by binning the
response of each point’s normal to a set of directions (Unit-X and
Unit-Y shown here) (e) We visualize the maximum direction for each
cell.

3.3 Extracting Scene Volumetric Features
We populate a Reality Skin with instances of objects from the RSW.
Each object instance consists of the original 3D object paired with
a transformation which places it in the scene, in a way which mini-
mizes an objective function (discussed in section 5). We perform a
uniform and discrete sampling of the transformation space for each

object by creating a volumetric representation of the scene (and for
each object) and running a sliding-window algorithm.
Given the inferred floor-plan of the scene, we create an aligning
transformation which rotates the floor normal to the Y-axis, trans-
lates the scene such that the floor lies at y = 0, and further rotates
such that the longest wall lies along the positive X-axis. We vox-
elize the aligned scene with a default voxel (cell) size of 10 cm on
each side. Each point in the internal point-cloud (all points not as-
sociated with a wall, the floor or ceiling) is assigned a voxel index.
For each cell we calculate Occupancy, the number of points falling
within this cell (figure 4b) and Normal Response, A 26-bin nor-
malized histogram summing the response (dot product) of each
point’s normal with a set of major and minor direction vectors (fig-
ure 4c–e).
We experimented with extracting more advanced features such as
described in Litany et al [19]. However, unlike object detection
algorithms, which search for near-exact matches, we are looking
for best possible matches, often with a very disparate set of objects.
Therefore a set of coarse features, which are easy to calculate and
compare, worked best for our work.
Note that automated [19] or “user in the loop” [37, 36] methods for
object classification and detection may be used at this stage to add
semantic properties to the feature vector of each cell. Such semantic
information is matched to tags defined on each object in the RSW,
and used in the objective function.

4 DESIGNING A REALITY SKIN WORLD

Figure 5: Each Reality Skins World (RSW) is a blue-print for dynam-
ically creating 3D worlds. Each RSW contains materials and code
needed to build the world’s layout. Sample materials for each RSW
are shown on the three floating cubes, on the right of each sub-figure.
At the heart of each RSW is a set of objects with attributes and tags
attached. The RSW’s shown are (a) Abandoned Hospital (b) Me-
dieval Village (c) Space Station (d) Cave.

An RSW is a blueprint containing all the rules, materials and ob-
jects required to construct a Reality Skin. In practice it is a combi-
nation of data and code by a designer/developer, and used by the RS
algorithm to create the final 3D virtual world. The RSW contains
two main parts. The first is a set of instructions detailing how to
create the layout of a 3D world, given a 2D floor-plan of the scene.
The second is a set of objects, complete with attributes and con-
straints, which are used by the RS algorithm to populate the virtual
world.
In section 3.2 we described how we infer a complete 2D floor-plan
for the scanned environment. The most straight-forward way to ex-
trude a 2D plan into 3D is construct a polygon for the floor, ceiling
and each of the walls in the floor-plan. Wall height, as well as posi-
tioning the ceiling is set to the height of the original ceiling plane.
Each polygon is triangulated and given consistent texture coordi-
nates. The designer may specify multiple rendering materials in

the RSW, tagged appropriately (e.g. floor, walls) and assign them
to each polygon. However, the designer may supply code which
builds more elaborate geometry based on the simple 2D floor-plan.
For example slanted walls of a space station, some of which over-
look a distant nebula, or natural cave walls, closing close overhead.
Ambient lighting may also be introduced in this stage. See section 6
for examples.
The RSW contains a data-set of objects, instances of which will
be used to populate the Reality Skin. Each object is typically a 3D
mesh complete with rendering properties (such as material). In the
data-set, each object is also assigned different attributes, used later
in the RS optimization. The attributes are detailed in table 15.

Attribute Type Description
ID uint Unique identifier for the RS algo-

rithm
Mesh mesh A reference to the mesh of the object

(for analysis and rendering)
Tags string

list
Textual tags which can be used for
semantic constraints

Enabled bool Allows an object to be temporarily
left out of the optimization

InitT M4x4 An initial transform meant to rotate
the object such that it’s Y-axis is up,
X-axis is forward, and scale it prop-
erly

SitOnFloor bool Constrain transformations to place
the object directly on the floor

NearFloor bool Constrain transformations to place
the object within 20cm of the floor

BackToWall bool Constrain transformations to place
object adjacent to scene walls

StayUpright bool Constrain transformations to rotate
only around up axis

MinHeight float Constrain object minimum height in
scene

MaxHeight float Constrain object maximum height in
scene

Table 1: RS Object Attributes

Once the RS optimization is complete, a set of object instances with
transformations is retrieved. Code in the RSW is used to instantiate
each object in the scene with the appropriate transformations. Cus-
tom code can at this point add additional props, lighting, particle
effects and other game elements.

5 REALITY SKINS

The input to the Reality Skin algorithm is an RSW, and a scanned
(and processed) environment. For each object in the RSW, we wish
to find a discrete set of transformations, which optimally place it in
the scene. The success metric for each object and transformation
pair (as discussed in section 3.3) compares the feature vectors of
the matching voxels in both object and scene.
The space of all possible transformations of an object is large, and
can be any combination of translation, rotation, scaling (and pos-
sibly even deformations). We compose the transformation of each
object O from two parts: a set of base transformations B1, ...BK ,
consisting of rotations (mostly around Y-axis), scaling and sub-cell
translations, and a discretized translation T . This separation allows
us to extract the feature vectors of an object for each Bi in advance
(since it is translation invariant). We then apply a sliding-window
algorithm comparing the cells of Bk to a specific location in the

5Note that the attributes SitOnFloor and NearFloor are mapped into
MinHeight and MaxHeight for convenience.

scene volume. The location compared determines T , a translation
of cellSize ∗ [w, l,h] where w, l,h are the indices of the compared
location in the scene volume.
The number and composition of base transformations (BT) for each
object are determined by its attributes. For example, objects which
are flagged StayUpright are rotated only around their Y-axis. Ob-
jects which are flagged NearFloor or OnFloor have sub-cell transla-
tions (along the Y-axis) applied to them, in order to find fine align-
ment to the floor plane. We apply each BT to the object point cloud,
and align the transformed point clouds such that they share a same-
size volume, from [0,0,0] to the maximum coordinates of the com-
bined transformed BT point clouds. We extract feature vectors for
each BT of the object (see section 3.3) and store the feature-vector
grids.

5.1 Generating a Reality Skin
Given an object O with K feature-vector volumes (one per BT),
we apply a sliding window algorithm over the scene feature-vector
3D volume (of size W × L×H), where the window size is deter-
mined by the volume of O (identical for all BT). For each position
in the scene p and for each feature-vector volume k we calculate
score(p,k) = ∑i λ (S(p+ i),Ok

i) where i iterates over the feature
volume of Ok, S(p+ i) is the feature-vector in the scene centered
on position p (shifted by local iterator i). λ is the scoring function,
comparing the feature vectors of a single voxel (cell) of an object
with the matching scene voxel. The function is defined as

λ (s,o) =


1.2−∑i

(sn(i)−on
i)

2

sn
i

if socc > 0 and oocc > 0
−0.4 if socc = 0 and oocc > 0
0 otherwise

where {s,o}n are the normal response normalized histograms
(compared with χ2) and {s,o}occ is the occupancy field. This defi-
nition of λ can be combined with semantic features, increasing the
score per cell, if it is a semantic match for the scene cell. Note
also that cell scores are summed per object (and BT) and not nor-
malized, to reflect a global objective measured by voxel. Therefore
a larger object can achieve a higher score, and a larger scene will
elicit a larger overall score.
The result of the sliding window algorithm (for object O) is a
W ×L×H×K grid of real values, scores for a discrete set of trans-
formations. We apply a non-max suppression algorithm to filter out
near-identical scores (with a spatial radius of 5 and BT radius of 3
by default, which can be overridden per object), and retrieve the list
of modes, i.e. transformations, for each object. Each final transfor-
mation for a mode is a composition of the BT and the grid-aligned
translation. For visualization purposes in figure 6 we flatten the
grid to its width-length dimensions by taking maximal value over
height and base position. As can be seen, the non-max suppres-
sion distributes the modes over the scene volume (and reduces their
number), which significantly speeds up the optimization process.
The selected modes (transformations) for each object are selected
to satisfy the unary constraints applied i.e. its geometric and se-
mantic fit to the scene, as well as designer specified constraints (e.g.
should be two feet from a wall).
Minimizing collisions between the selected modes is of high im-
portance when generating an RS. We check for collisions in two
stage: First we compare axis-aligned bounding boxes between each
pair of modes, which rules out a large percentage of the possible
collisions. For all the collisions detected in this manner, we com-
pare the occupancy for each cell between two modes and sum the
results. Thus, the collision factor between two objects represents
the physical collision volume. A collision between two modes is
modeled as a pairwise constraint, and incorporated into the opti-
mization.

Figure 6: Finding the best transformations (modes) for each object in
the RSW: (a) Two sample models from the Hospital RSW (b) Visual-
ization of the score map for each model over the xilab scene (cap-
tured in Tango). The 4D score map (over scene volume and base
positions) is flattened to the X-Z plane via max. (c) Non-max sup-
pression is used to extract modes (transformations) from the score
map. (d,e) Visualization and modes for the mit32 model [38].

We formalize the problem as follows: Suppose there are n modes,
corresponding to n potential objects, along with their transforma-
tion in the scene. For each object i, let the binary variable ui in-
dicate whether the object is to be included within the RS: ui = 1
indicates the object will be included, and ui = 0 means it will be
left out. For object i, si is the score which reflects how well that
objects matches the underlying scene – including geometric and se-
mantic fit, as well as designer specified constraints, as described
above. A higher value of si is better. For a pair of objects (i, j),
the scalar ci j gives the collision score between the two objects; the
lower ci j, the better.
We wish to solve the following optimization problem:

min
u∈{0,1}n

−∑
i

siui +
1
2 ∑

i 6= j
ci juiu j

If we define the matrix P by

Pi j =

{
1
2 ci j if i 6= j
0 otherwise

then we may rewrite our problem in matrix-vector notation as

min
u∈{0,1}n

−sT u+uT Pu (1)

This is a non-convex integer quadratic program, which in general
will be NP-hard to solve. Progress has been made recently within
the optimization community on how to attack such problems. In
what follows, we rely on the very recent Concave Quadratic Cuts
(CQC) technique of Park and Boyd, whose essential details we now
present. The interested reader is referred to [27] for a fuller treat-
ment.

5.2 RS Algorithm Based on CQC
The goal of CQC is to relax the non-convex integer quadratic pro-
gram to a convex continuous problem, which we can then be solved
using standard techniques from convex optimization. The relax-
ation begins by using the following lifting: let U = uuT . Then the
optimization in (1) becomes

minimize
u∈{0,1}n,U∈Rn×n

Tr(PU)− sT u

subject to U = uuT

Noting that the matrix U is positive semidefinite, a natural relax-
ation for the non-convex constraint U = uuT is U � uuT , where the
notation A� B means A−B� 0, that is, A−B is positive semidef-
inite. The simplest relaxation of the integrality constraints is to
ignore them, leading to the following optimization problem:

minimize
u∈Rn,U∈Rn×n

Tr(PU)− sT u

subject to
[

U u
uT 1

]
� 0

(2)

where the semi-definiteness constraint U � uuT has been rewrit-
ten using the Schur complement. The optimization problem (2) is
a convex problem, indeed a semi-definite program, which can be
solved using standard packages. Let us denote the solution of this
problem to be (uo,Uo).
The result of this procedure will be a real vector uo ∈ Rn; but
what we desire is a Boolean vector u∗ ∈ {0,1}n, which can indi-
cate whether an object is to be included or excluded from the RSW.
Thus, we require a rounding procedure. We follow the recently pre-
sented technique described in another paper by Park and Boyd [26];
although that paper is concerned with integer programming on con-
vex quadratic functions, the rounding technique is independent of
the convexity assumption.
The rounding procedure itself is quite intuitive: it is based on the
fact that ideally, one would have Uo = uouT

o , and that it was our re-
laxation that introduced a discrepancy between Uo and uouT

o . One
would therefore like to “sample the discrepancy” between these
two quantities. To make this more formal, one generates a num-
ber of random samples ũk from the Gaussian of mean uo and co-
variance matrix Uo− uouT

o . The samples will be still be real vec-
tors, so one may round them element-wise to Boolean vectors, that
is, each element is rounded to the nearest value in the set {0,1},
which we denote by ûk = Round(ũk) Finally, ûk is adjusted by a
series of local moves, in which each bit is allowed to flip; this
adjustment is performed in a greedy fashion, where at each it-
eration the bit-flip corresponding to the best improvement to the
objective function −sT uk + (uk)T Puk is performed. This proce-
dure is terminated once there are no more local improvements to
be made, leading to uk. Finally, one selects the sample uk∗ with
the optimal function value on the original objective function, i.e.
k∗ = argmink

(
−sT uk +(uk)T Puk). To summarize, the rounding

procedure is as follows:

For k = 1, . . . ,K:

1. Sample ũk from a Gaussian of mean uo and covariance Uo−
uouT

o .

2. ûk = Round(ũk).

3. Greedily perform bit-flips on ûk until no more improvements
are possible, giving uk and objective function value vk =
−sT uk +(uk)T Puk.

Take u∗ = uk∗ where k∗ = argmink vk.

One detail remains, namely the number of samples K to use. Ac-
cording to the complexity analysis in [26], one should use K =
O(n); in practice, we take K = 3n.
Note that [27] introduces an interesting way to preserve integral-
ity conditions on u, via the addition of a particular set of concave
constraints. We have tried solving the Reality Skins problem with
problem (2) as well as with these additional integrality-encouraging
constraints, and have found that there is effectively no difference in
the quality of solutions we have computed. The program with the
integrality-encouraging constraints is, however, somewhat slower.
Thus, for the remainder of this paper we solve problem (2) as is,
without the extra constraints.

5.3 RS Algorithm Based on CQC With Bounds
A natural extension to the Reality Skins problem is to add in bounds
on the number of objects. Here, we will focus on upper bounds,
but it is straightforward to use an analogous technique to deal with
lower bounds.
Suppose that each object i is endowed with a type ti ∈ {1, . . . ,T};
as an example, ti = 1 could indicate that object i is a chair, while
ti = 4 could indicate that it’s a table. Our goal in specifying bounds
is to ensure that there are not too many of any given object selected.
Such constraints looks like

∑
i:ti=t

ui ≤ bt t = 1, . . . ,T

Let us define the T ×n matrix

Ati =

{
1 if ti = t
0 otherwise

The bounds constraints may then be written in matrix-vector nota-
tion as

Au≤ b

With these bounds, it is easy to amend the original semidefinite
program as follows:

minimize
u∈Rn,U∈Rn×n

Tr(PU)− sT u

subject to
[

U u
uT 1

]
� 0

Au≤ b

(3)

This problem is still a (convex) semi-definite program, and can han-
dled by the usual solvers. The rounding procedure is also modified
slightly, as we now wish to ensure that the new constraints hold on
the rounded solution:

For k = 1, . . . ,K:

1. Sample ũk from a Gaussian of mean uo and covariance Uo−
uouT

o .

2. ûk = Round(ũk).

3. If Aûk � b, go to Step 1.

4. Greedily perform bit-flips on ûk until no more improvements
are possible, where allowed bit-flips preserve Aûk ≤ b. The
end of this procedure gives uk and objective function value
vk =−sT uk +(uk)T Puk.

Take u∗ = uk∗ where k∗ = argmink vk. In the above, the changes are
the addition of Step 3, and the modification to Step 4, both of which
enforce the constraints on the bounds.

6 RESULTS

6.1 Data Collection and Implementation
We captured environments for Reality Skins (see also figure 2) em-
ploying: Google Tango [11], Structure [23] and Kinect [21]. We
also used rooms from the Sun3D [38] dataset which have been re-
constructed by [4]. Each device has different properties, e.g. the
Tango is capable of scanning large environments and loop clo-
sures, but produces coarse and noisy meshes. The Structure and the
Kinect provided high-quality meshes, but the localization was not
stable, and could not scan large environments. Overall we collected
157 environments (65 Tango, 59 Structure, 19 Sun3D, 14 Kinect)
ranging from offices to homes, small rooms to large spaces.
The RealitySkins framework and algorithm was developed on
a desktop machine in a client/server architecture. Scene plane
inference and classification was implemented as multi-threaded
CPU code. The feature-vector extraction for the scene, and pre-
processing of each object in an RSW was implemented on an
Nvidia GPU using CUDA.
The sliding-window algorithm comparing the feature-vector grid of
each object (with multiple base positions) with the scene was imple-
mented on the GPU as well. In our implementation, each execution
of the kernel computes a dense score map for one object. The grid
size of the CUDA kernel is equal to the dimensions of the scene
grid. The threads in each block correspond to the different base po-
sitions. By default each block contains 64 threads. If number of BT
exceeds the default, each thread iterates over several. Each block
first copies a sub-volume of the scene (corresponding to the block
index) into shared memory, after which each thread executes the
sliding-window comparison. Once all blocks finish execution, we
activate a non-max suppression kernel, and copy back the modes of
the object.
We then calculate collisions between the modes as previously de-
scribed, and solve the optimization problem in (3) using CQC
with CVX, a package for specifying and solving convex prob-
lems [13, 12]. The result of the CQC optimization is a list of se-
lected modes. We save each result as a list of pairs: originating
objects and associated transformations.
The design of an RSW as well as the experience of Reality Skins
in virtual reality were implemented in Unity [35], a popular and ac-
cessible game engine. The designer develops an RSW in edit mode,
by dragging and dropping objects into an RSW interface, and set-
ting attributes and tags. In play mode, the application can process
an environment from a pre-scanned mesh (or pointcloud) file, or
access any depth camera with a Unity interface (which exists for
all cameras used). Once an environment is scanned, the game en-
gine requests service from the RealitySkins executable, passing a
mesh and an RSW configuration. The returned result is a 2D lay-
out for the environment, and instances of transformed RSW object
instances.
Given a scene of dimensions 80×30×60 (with a voxel size of 10
cm on a side), plane detection and classification takes 0.1ms. Floor-
plan inference takes 3− 5 seconds. Processing a 10-object RSW
(base transformations and feature-vector grids) takes 10 seconds.
Detecting modes for all objects over the scene takes 5s. Solving
(3) using CQC takes 5s−15s (depending on number of modes and

collisions). Note that each RSW in processed in advance. Therefore
the total average time to produce an RS is 15s−25s. We found that
in single room environments this time was about 5s in practice.

6.2 Quantitative Evaluation

In order to evaluate the quality of the Reality Skins algorithm, we
ran the algorithm on 30 different scenes, ranging from small of-
fices, to living rooms, common areas and lounges. We applied four
RSW’s to each scene (Hospital, Space Station, Village and Cave)
for a total of 120 data points. We normalized the energy by the
’perfect’ score for each scene, calculated by summing the cover-
age score for each occupied voxel in the scene (i.e. matching the
scene to itself), disregarding the edges of the scene. Furthermore
we visually inspected each resulting RS, finding 87% of the results
acceptable. The mean score was 0.57 (standard deviation of 0.14)
with a distribution as shown in figure 7. We found that even results
with a score of 0.2 produced an acceptable Reality Skin, once the
world was textured and lighted properly.
The distribution of the overall results is shown in figure. Overall
the mean normalized energy was 0.57 with a standard deviation of
0.14. We found that even a result of 0.2 produced an acceptable RS.

Figure 7: We performed a quantitative evaluation of our algorithm,
creating Reality Skins for 30 different scenes over 4 RSW’s. We
normalize the score per scene and show the distribution. The top
half shows four sample results from the evaluation, from left to right
ConfRoom:Hospital (0.3), Dentist:Village (0.47), Office:Space Sta-
tion (0.75), XI Lab:Village (0.88).

6.3 Qualitative Results

The best way to experience Reality Skins, is directly through a
VR headset, experiencing the immersion, freedom of movement,
and tactile truth. In figure 8 we show different RS’s on the MIT-
dorm [38]. The plane classification and layout inference is iden-
tical in all results. The processing time to generate each RS was
7−9 seconds. In figure 9 we show additional results: Both (a) and
(b) use the Space Station RSW. As discussed in section 4, we cus-
tomized generation of the 3D floor-plan from the 2D layout, inte-
grating slanted walls and transparent windows overlooking a planet.
(c) shows a Cave RS in the XILab model. In the Cave RSW we re-
place the closed layout with free standing granite slabs and wooden
fences. Instead of a closed ceiling, we add floating rough stone ceil-
ing, which gives the illusion of a large space. We refer the reader to
the supplemental material for additional results.

Figure 8: Reality Skin result: (a) We process the MIT Dorm
model [38, 4], and produce a Reality Skin for (b) Space Station (c)
Abandoned Hospital (d) Cave.

7 CONCLUSIONS AND FUTURE WORK

We presented Reality Skins, 3D environments dynamically cre-
ated to approximate the geometry and semantics of a user’s sur-
roundings, a step towards large-scale untethered VR. RS provides
a framework for VR developers, to design a world which is adap-
tive, customizable and unique. We demonstrated how we process
RSW data-sets in advance, and interactively build an RS given a
large environment, using parallel computation and state of the art
optimization techniques.
In this paper we focused on the constraint-based dynamic genera-
tion of 3D environments (Some failure cases are in figure 10). The
next steps for RS require solving additional problems: Create an
avatar for the user in the virtual world so she can touch objects or
sit on chairs. A partial solution may be devices such as Leap Motion
which can integrate hands into VR experiences. Mismatches which
naturally occur between the RS and the environment may hinder
the user’s safety. When there is a large gap, we render a wireframe
of the physical obstacle (similar to Vive’s chaperone system). A
more drastic example of this is the the static nature of the system,
where we scan the environment once, generate a Reality Skin and
do not update it, e.g. if a chair falls over. Recently advances have
been made in dynamic SLAM pipelines which change over time,
and which incorporate object-level detection. We intend to make
use of these to refine a RS as the scene evolves. An interesting and
crucial aspect of future work would be an extensive user study, ex-
ploring how safe and immersive users find RS environments, and
their tolerance level for mismatches.
We envision different uses for RS such as adapting pre-designed
games and experiences to the user’s home, e.g. a game situated in
a virtual kitchen which is modified and adapted to his real kitchen.
A different use would be exciting single and multi-player games
in a large environment such as an office building, re-themed as a
space station infested with aliens which the players must vanquish.
A third use might be as a gateway into a completely virtual experi-
ence: The user puts on his VR headset while on the sofa, intending
to launch a racing game. Before starting the game, the sofa and
living room might be modeled as a driver’s lounge, perhaps inte-
grating a virtual menu system, before letting the user jump into the
game.
Mobile VR experiences such as Samsung GearVR [29] and to some
extent Google Tango [11] demonstrate the move toward untethered
VR, without the need for fixed cameras and sensors. We hope to
see Reality Skins incorporated into these and future devices. In fu-

ture work we would like to integrate more scene understanding and
semantic constraints into the system, and enable even larger multi-
stored spaces. We would also like to allow the user some authoring
control over the generation of the 3D environment, superseding the
fixed designer’s constraints and objects.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-
tributed optimization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends R© in Machine
Learning, 3(1):1–122, 2011.

[2] C. Charbonnier and V. Trouche. Real Virtuality. Technical report,
Artanim Foundation, 07 2015. http://www.artanim.ch/pdf/
Real\%20Virtuality_White\%20Paper.

[3] S. Chib and E. Greenberg. Understanding the metropolis-hastings al-
gorithm. The American Statistician, 49(4):327–335, 1995.

[4] S. Choi, Q.-Y. Zhou, and V. Koltun. Robust reconstruction of indoor
scenes. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2015.

[5] R. O. Duda and P. E. Hart. Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–
15, 1972.

[6] H. Edelsbrunner. Weighted alpha-shapes, 1992.
[7] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan.

Example-based synthesis of 3d object arrangements. In SIGGRAPH
Asia, 2012.

[8] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Reconstruct-
ing building interiors from images. In In Proc. of the International
Conference on Computer Vision (ICCV, 2009.

[9] R. Gal, L. Shapira, E. Ofek, and P. Kohli. Flare: Fast layout for aug-
mented reality applications. In Mixed and Augmented Reality (IS-
MAR), 2014 IEEE International Symposium on, pages 207–212, 2014.

[10] M. X. Goemans and D. P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[11] Google. Google tango tablet, 2015. https://www.google.
com/atap/project-tango/.

[12] M. Grant and S. Boyd. Graph implementations for nonsmooth con-
vex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Re-
cent Advances in Learning and Control, Lecture Notes in Control and
Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/˜boyd/graph_dcp.html.

[13] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, Mar. 2014.

[14] W. K. Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 57(1):97–109, 1970.

[15] HTC. Htc vive, 2016. http://www.htcvive.com/us/.
[16] S. Ikehata, H. Yang, and Y. Furukawa. Structured indoor modeling.

In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

[17] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera. ACM Symposium on User Interface Software
and Technology, October 2011.

[18] B. Jones, R. Sodhi, M. Murdock, R. Mehra, H. Benko, A. Wilson,
E. Ofek, B. MacIntyre, N. Raghuvanshi, and L. Shapira. Roomalive:
Magical experiences enabled by scalable, adaptive projector-camera
units. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, pages 637–644, New
York, NY, USA, 2014. ACM.

[19] O. Litany, T. Remez, D. Freedman, L. Shapira, A. M. Bronstein, and
R. Gal. ASIST: automatic semantically invariant scene transforma-
tion. CoRR, abs/1512.01515, 2015. http://arxiv.org/abs/
1512.01515.

[20] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun. Interactive
furniture layout using interior design guidelines. In SIGGRAPH 2011,
Aug. 2011.

Figure 9: Four additional Reality Skins results: (a) Space Station in the XILab room (b) Space Station in MIT32 [38] (c) An underground cave in
XILab (d) An abandoned Hospital complete with cute zombies in HarvardC5 [38].

Figure 10: Failure cases: (a) Complex scene structure and missing
walls can cause the floor-plan inference to go wrong (b) A noisy scan
can cause misclassification of the floor plane and an unaligned vol-
ume (c) Large environments, large amount of modes and intensive
use of GPU may cause a heart wrenching blue screen of death (d) In
a few cases our optimized objective function simply does not produce
pleasing results, often fixed by running the optimization again.

[21] Microsoft. Microsoft kinect sensor, 2015. https://dev.
windows.com/en-us/kinect.

[22] C. Mura, O. Mattausch, A. J. Villanueva, E. Gobbetti, and R. Pajarola.
Automatic room detection and reconstruction in cluttered indoor envi-
ronments with complex room layouts. Computers & Graphics, 44:20
– 32, 2014.

[23] Occipital. Occipital structure sensor, 2015. http://structure.
io/.

[24] S. Oesau, F. Lafarge, and P. Alliez. Indoor Scene Reconstruction using
Feature Sensitive Primitive Extraction and Graph-cut. ISPRS Journal
of Photogrammetry and Remote Sensing, 90:68–82, March 2014.

[25] N. Parikh and S. P. Boyd. Proximal algorithms. Foundations and
Trends in optimization, 1(3):127–239, 2014.

[26] J. Park and S. Boyd. A Semidefinite Programming Method for Integer
Convex Quadratic Minimization, Apr. 2015.

[27] J. Park and S. Boyd. Concave Quadratic Cuts for Mixed-Integer
Quadratic Problems, Oct. 2015.

[28] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and

A. J. Davison. SLAM++: simultaneous localisation and mapping at
the level of objects. In 2013 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1352–1359, 2013.

[29] Samsung. Samsung gearvr, 2015. http://www.samsung.com/
global/microsite/gearvr/.

[30] S. Sharples, S. Cobb, A. Moody, and J. R. Wilson. Vir-
tual reality induced symptoms and effects (vrise): Com-
parison of head mounted display (hmd), desktop and pro-
jection display systems. Displays, 29(2):58–69, 2008.
http://dblp.uni-trier.de/db/journals/displays/
displays29.html#SharplesCMW08.

[31] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from rgbd images. In Proceedings of the 12th
European Conference on Computer Vision - Volume Part V, ECCV’12,
pages 746–760. Springer-Verlag, 2012.

[32] N. Silberman, L. Shapira, R. Gal, and P. Kohli. A contour com-
pletion model for augmenting surface reconstructions. In Pro-
ceedings of ECCV 2014, ECCV’14. Springer International Publish-
ing, September 2014. http://research.microsoft.com/
apps/pubs/default.aspx?id=225020.

[33] A. L. Simeone, E. Velloso, and H. Gellersen. Substitutional reality:
Using the physical environment to design virtual reality experiences.
In Proceedings of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems, CHI ’15, pages 3307–3316, New York,
NY, USA, 2015. ACM.

[34] E. Turner and A. Zakhor. Floor plan generation and room labeling
of indoor environments from laser range data. In Computer Graph-
ics Theory and Applications (GRAPP), 2014 International Conference
on, pages 1–12. IEEE, 2014.

[35] Unity3D. Unity, 2015. http://www.unity3d.com.
[36] J. Valentin, V. Vineet, M.-M. Cheng, D. Kim, J. Shotton, P. Kohli,

M. Niessner, A. Criminisi, S. Izadi, and P. Torr. Semanticpaint: In-
teractive 3d labeling and learning at your fingertips. ACM Trans. on
Graphics (TOG), August 2015.

[37] Y.-S. Wong, H.-K. Chu, and N. J. Mitra. Smartannotator an interactive
tool for annotating indoor rgbd images. Computer Graphics Forum
(Special issue of Eurographics 2015), 2015.

[38] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database of big spaces
reconstructed using sfm and object labels. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 1625–1632, Dec 2013.

[39] Y.-T. Yeh, L. Yang, M. Watson, N. D. Goodman, and P. Hanrahan.
Synthesizing open worlds with constraints using locally annealed re-
versible jump mcmc. ACM Trans. Graphics, 31(4):1–11, July 2012.

[40] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and
S. J. Osher. Make it home: automatic optimization of furniture ar-
rangement. In SIGGRAPH 2011, Aug. 2011.

