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Abstract

We introduce TopoCut: a new way to integrate knowl-
edge about topological properties (TPs) into random field
image segmentation model. Instead of including TPs as
additional constraints during minimization of the energy
function, we devise an efficient algorithm for modifying
the unary potentials such that the resulting segmentation
is guaranteed with the desired properties. Our method is
more flexible in the sense that it handles more topology
constraints than previous methods, which were only able
to enforce pairwise or global connectivity. In particular,
our method is very fast, making it for the first time possible
to enforce global topological properties in practical image
segmentation tasks.

1. Introduction
The topic of this work is the integration of topological

prior knowledge into random field image models. Several
image segmentation and restoration tasks can benefit from
such a step, e.g. figure-ground segmentation, where it is
often safe to assume that the foreground region will form
a connected component, or medical image segmentation,
where topological knowledge about objects, such as hearts,
vessels and cortical surfaces, is available.

Discrete random field image models, namely Markov
random fields (MRFs) [13] and conditional random fields
(CRFs) [17], are currently amongst the most successful
techniques for image restoration and segmentation tasks.
Since in this work we only study the task of prediction,
not of parameter learning, we will not distinguish between
both classes and refer to them jointly as random field mod-
els. Random field models are popular because they allow
simple probabilistic modeling of image properties while
at the same time providing very efficient inference tools,
in particular the GraphCut algorithm [8]. However, in

Figure 1. Image segmentation with topological side information:
GraphCut-based image segmentation models tend to make topo-
logical mistakes, because we only have access to local cues (mid-
dle). Enforcing a priori known topological properties (here: con-
nectedness and holefreeness) improves the segmentation (right).

their most common (and most efficiently solvable) pairwise
form, random field models only encode local interactions
between pairs of pixels. This makes it hard for them to ex-
press higher-level prior information, such as region shape
or higher-order image statistics.

To address this shortcoming, recent work has started to
study the integration of higher-order potentials into ran-
dom field models. For reasons of computational tractability,
successful approaches in this area either rely on relatively
small clique sizes [16, 25, 26, 28], or they look at restricted
classes of potentials defined on superpixels or similar pre-
defined image regions [12, 14]. Despite their strongly in-
crease expressive power, these models still mainly encode
local image properties. Notable exceptions include [19],
which shows how a parametric family of region shapes can
act as a global prior; and [11], which by extending the cut
cost while taking submodularity into account, can deal with
challenging situations, such as severe shrinkage and images
with shading.

In this work we study truly global topological image
properties, such as the connectedness of a label region, or
the presence and absence of holes. In contrast to, e.g.,
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active contour models and level-set methods [9, 18], little
prior work exists on including topology into random field
models. To our knowledge the only existing approaches
are [24, 29, 30, 20, 27, 10], which we discuss in Section 1.1.
Our proposed solution differs significantly from these.

We make three main contributions in this work:
1) we introduce a minimum perturbation topological pre-

diction (MPTP) that enforces topology properties by selec-
tively perturbing the energy function,

2) we prove that MPTP is equivalent to previous NP-hard
approaches when used with an Lp measure of distortion for
p <∞, but that it is efficiently solvable for p =∞,

3) we derive an iterative algorithm for random field
image segmentation with topological constraints that is
a) more general and b) more efficient than previous ap-
proaches.

1.1. Related Work

To our knowledge, there have been only a few prior at-
tempts to automatically incorporate topological properties1.

Zeng et al. [30] introduce TopologyCuts, a topology
preserving variant of GraphCut that is inspired by level-
set methods. After initialization with a coarse pre-
segmentation of correct topology, TopologyCuts iteratively
minimizes the energy function while preserving the topol-
ogy, converging to a local minimum of the energy.

Vicente et al. [29] aim at finding globally optimal solu-
tions to the problem of energy minimization with the topo-
logical constraint of a connected foreground region. Be-
cause they can prove that even for energy functions with
only unary terms this is an NP-hard problem, they restrict
their studies to the reduced case of enforcing connectivity
between manually selected seed points, which allows, e.g.,
the interactive segmentation of thin elongated image struc-
tures. The authors introduce DijkstraGC, a dynamic pro-
gramming algorithm that yields globally optimal solutions
for unary-only energy functions and still provides an ap-
proximate solution for energy functions that include pair-
wise terms.

The only successful approach to tackle the problem of
enforcing connectivity of the entire foreground region with-
out manual initialization or seed points is due to Nowozin
and Lampert [24]. They also study the problem of enforc-
ing connectivity of the foreground region. They devise an
algorithm based on a linear programming (LP) relaxation of
the original problem which is solvable to global optimality.
However, the relaxation is not tight, such that the result-
ing image labeling is also not guaranteed to be optimal, and
fractional instead of binary valued solutions can occur. Fur-

1The term topological properties occurs in earlier work, but with a dif-
ferent meaning. For example in [4], the authors use it for the possibility
of adding hard constraints for individual pixels to force them in either the
foreground or the background region.

thermore, the authors found the LP relaxations to not scale
well in the number of nodes to label: even with optimized
and parallelized code it is not possible to handle more than
a few hundred output nodes in reasonable time. We note
[20, 27], both of which are closely related to the aforemen-
tioned methods.

Finally, it is worth mentioning [10], in which Jain et
al. use topology as a measure of the similarity between
two different segmentations, specifically in a learning pro-
cedure. The algorithm, however, cannot itself guarantee a
segmentation with the correct topology.

2. Segmentation with Topological Constraints
We first fix the notation used in the rest of the

manuscript. Let V denote the set of nodes that we want
to label. Typically, these are the pixels or superpixels of an
image. Each node can take labels from a label set L, i.e.
a labeling y is an element of VL =: Y . For simplicity we
only consider binary segmentations, i.e. L = {0, 1}, where
1 denotes foreground and 0 denotes background. We will
discuss extensions in Section 5.

Adopting an energy-based random field model, each
node i ∈ V is equipped with a unary potential, θi(l) ∈ R
for every l ∈ L, that expresses the cost of assigning the la-
bel l to the node i. To simplify the notation we introduce
the potential difference

µi := θi(1)− θi(0). (1)

If necessary, we can compute unary terms θ̂i(yi) = yiµi
from µi that result in an energy function equivalent to the
original one.

Additionally pairwise potentials, θii′(l, l′), express the
cost of choosing a label combination (l, l′) for two nodes
(i, i′). Using a graph representation, all non-zero poten-
tials of this kind define an edge set E ⊂ V × V , and
typically this is based on the 4- or 8-neighborhood rela-
tion. Again for simplicity we will assume the most popu-
lar class of symmetric and submodular potentials, in which
θii′(0, 0) = θii′(1, 1) = 0 and θii′(0, 1) = θii′(1, 0) =: ηii′

for ηii′ ≥ 0. We do not consider higher order potentials at
this place, but discuss them in Section 5.

The energy of a labeling (or segmentation) y is defined
as the sum of the above components, which in our case is

E(y) :=
∑
i∈V

µi yi +
∑
i,i′∈E

ηii′Jyi 6= yi′K. (2)

The task of prediction (image segmentation or restoration)
consists of finding the labeling of minimal energy:

y∗ := argminy∈Y E(y). (3)

If no other conditions are imposed, Equation (3) can be
solved efficiently, for example, using the GraphCut algo-
rithm [5, 8].
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2.1. Encoding topological properties

For any binary segmentation y ∈ Y , let fg(y) := {i ∈
V : yi = 1} be its foreground region. We express topol-
ogy properties of fg(y) by predicates TPβ0,β1 , where β0 and
β1 upper bound the number of zero-dimensional and one-
dimensional topological features, i.e., the number of con-
nected components and holes2 [23]. In particular, TP1,∞
expresses if the foreground of a segmentation is connected,
and TP∞,0 if it is holefree. TP1,0 expresses both proper-
ties simultaneously3. When there is no ambiguity, we write
TP(y) for TPβ0,β1

(y).
Given an energy function E( · ;µ, η) : Y → R with

unary potential vector µ and pairwise parameters η, and
given as a topology property TP, we study the following
two problems.

Problem 1 (Topologically constrained energy minimization
– TCEM). Solve the constrained optimization problem

argminy∈Y E(y) subject to TP(y) = True. (4)

Clearly, if Equation (4) has a feasible solution it will ful-
fill TP. This has been used by previous approaches to per-
form image segmentation with topological side constraints,
see our discussion in Section 1.1. There it has also been
observed that Problem 1 is generally NP-hard (e.g. [29]),
and standard energy minimization techniques, even those
designed to handle higher order potential functions, are not
directly applicable anymore.

We therefore propose an alternative way for incorporat-
ing the information provided by TP into an energy mini-
mization framework and we will later show that it is com-
putationally advantageous.

Problem 2 (Minimal perturbation topological prediction –
MPTP). For a given 1 ≤ p ≤ ∞, solve

min
µ̂
‖µ̂− µ‖p subject to TP(y∗) = True (5)

where y∗ = argminy∈Y E(y; µ̂, η).

As above, the solution y∗ will fulfill TP if it exists, and
in the remainder of this paper we will show that minimal
perturbation topological prediction is a powerful framework
for image segmentation with topological constraints.

Intuitively, Problem 2 expresses the idea of perturbing
the unary potentials of the energy function until an ordinary
energy minimization (i.e. without additional constraints)
yields a solution with the desired properties. Such a step

2In our definition of components and holes we always use 4-
connectivity of the foreground and 8-connectivity for the background (See
[9] for the reason).

3More specific criteria based on user input are possible, e.g. “Connect
these two components!”. It will become clear from the construction in
Section 3 that our method would be able to handle these as well.

is natural in a computer vision scenario, since there unary
potentials are typically only estimated anyway, based, e.g.,
on local image properties. When faced with a segmentation
result that does not have the desired property TP, it makes
sense modify the energy in a way that the segmentation re-
sults better fits our a priori knowledge.

From a practical point of view, the main advantage of
MPTP is that the step of modifying E can be decoupled
from the step of actual minimizing the energy. We are free
to find µ̂ any way we want, as long as it solves Equation (5)
and leads to a segmentation fulfilling TP. Once we con-
structed µ̂, we can rely on an arbitrary existing energy min-
imization technique to perform the actual prediction.

Clearly, a key question in minimal perturbation topolog-
ical prediction is under which conditions solving Problem 2
is actually easier than the NP-hard Problem 1. Looking at
the simplest possible case of a random field with only unary
potentials, we can establish the following equivalence re-
sult. For space reasons we only state Theorems 1 and Corol-
lary 1 here. Their proofs can be found in the technical report
that is available at the author’s homepage.

Theorem 1. For an energy function Eµ with only unary
terms, Problem 1 is equivalent to Problem 2 with p = 1.

Corollary 1. Problem 2 with any 1 ≤ p <∞ is NP-hard.

Interestingly, for p = ∞ the situation is fundamentally
different, and we will concentrate on this case for the rest
of the paper. In the following section we introduce an al-
gorithm for performing image segmentation with topology
constraints by solving minimum perturbation topological
prediction with p =∞. 4

3. The Algorithm
In this section we explain our algorithm for solving Prob-

lem 2. Since it relies on tools from computational topology,
we start by introducing the most relevant terms from that
area.

Given a function φ : R2 → R, we study topology fea-
tures of a sublevel set (an object), O = φ−1(∞, 0] :=
{x ∈ R2 | φ(x) ≤ 0} (see Figure 2.) Intuitively, given
a topology feature α of O (a component or a hole), its ro-
bustness [2] is the minimal error we can tolerate to get a
function which approximates φ and eliminates α, formally,
ρφ(α) = minα/∈φ̂−1(−∞,0]‖φ̂ − φ‖∞. Different topology
features of an object have different robustness. Specifically,
it is proved in [2] that

4Note that in the context of topological image properties, p = ∞ is
in fact a natural choice. For example, when connecting two components,
the penalization ‖µ̂ − µ‖1 will be (roughly) proportional to the length of
the connecting path, whereas ‖µ̂ − µ‖∞ expresses the strongest obstacle
along the path. Properties of such kind are typical for topological studies,
because they are invariant under arbitrary continuous reparameterizations
of the image plane.
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Theorem 2 (Robustness). For each topology feature, α,
there exists a unique pair of points (cα, dα) such that
ρφ(α) = min{|φ(cα)|, |φ(dα)|}.

cα is called creator and dα is called destroyer of α. Both
are critical points of φ [22] 5. Note that the creator of a
component is a minimal point and the destroyer of a com-
ponent is a saddle point. In Figure 2 left, the the creators of
the three components are m0, m2 and m3. The destroyers
are s∞, s2 and s3, where s∞ is a virtual vertex at infin-
ity. There are other critical points, which may not be as-
sociated. For the case of holes, the creators and destroyers
are saddle points and maximal points respectively. An algo-
rithm to compute (cα, dα), and thus ρφ(α), is devised in [2].
Robustness was used to enforce topological constraints in
curve and surface evolusion [6]. However, existing results
do not provide us with the perturbation to actually eliminate
relevant topology features, yet.

3.1. TopoSimp: remove topology noise of an object

Given a function φ, and β0, we devise an algo-
rithm which computes a closest perturbation, φ̂, so that
φ̂−1(−∞, 0] has no more than β0 connected components.
Other algorithms have been designed to simplify topologi-
cal structure, but they serve different purposes [7, 1].

We will construct φ̂ by adjust function values of φ such
that all superfluous components of O = φ−1(−∞, 0] are
eliminated. We first compute the robustness of all compo-
nents of O using the algorithm from [2]. We keep the β0
most robust components and eliminate the rest. For each
component α, the creator cα corresponds to a minimal point
and the destroyer dα corresponds to a saddle. We have
two cases depending on which of them has a function value
closer to zero.
Case 1, REMOVE: If |φ(cα)| ≤ |φ(dα)|, take the con-
nected component containing cα. For each point in such
component, raise its function value to 0 + ε.
Case 2, MERGE: If |φ(cα)| > |φ(dα)|, take a path which
goes through dα, connects α and another component α′

with a bigger robustness. For each point in such path with
positive function value, decrease its function value to 0− ε.
Note that this path is more special than described. It is the
path in the component tree, as frequently used in mathemat-
ical morphology [21]. Any point in such path has the value
≤ φ(dα). More details will be provided in the technical
report that is available at the author’s homepage.

Here we let ε be an arbitrarily small positive number. The
raising (resp. decreasing) of the value at each point would
turn its sign to positive (resp. negative). The first case is
equivalent to removing the whole component from the seg-
mentation, when the corresponding minimal point is closer

5In case if some critical points share a same function value, the pairing
could be ambigous. This can be solved by a random choice.

to zero than the saddle point. The second case is equivalent
to merging two components by connecting a path between
them, so that the highest point of the path is the saddle (see
Figure 2).

c0 c1

c2d1

d2

Figure 2. Functions and the corresponding objects (the shaded re-
gions). Left: A function whose corresponding object has three
components. Right: The closest perturbation in which the middle
and right components are eliminated by merging and removing re-
spectively. (Images are from [6].)

We can extend the algorithm to include the constraint of
an upperbound β1 of the number of holes. Intuitively, the
algorithm ignores the β1 most robust holes. For the others,
it chooses to either merge with other holes, or seal them.

Theorem 3. Our algorithm computes argmin‖φ̂ − φ‖∞,
such that TPβ0,β1

(φ̂−1(−∞, 0]) = True.

Proof. In the algorithm, to eliminate a topology feature α
the amount of perturbation for each individual point is up-
perbounded by the minimum of |φ(cα)| and |φ(dα)|, and
thus the robustness of α. Therefore, ‖φ̂ − φ‖∞ is upper-
bounded by the maximum of the robustness of the (β0+1)th
most robust component and the (β1+1)th most robust hole.
According to Theorem 2, this is the best perturbation we can
achieve in order to eliminate all superfluous components
and holes.

Intuition. For each component of the sublevel set (a basin),
the algorithm has two potential ways of eliminating it. The
first is filling the basin up; the cost is then the distance of the
bottom from the ground. The second way involves digging
a canal so that the basin is connected to another basin which
is harder to eliminate. The cost of digging the canal is the
maximal altitude that can be reached along the correspond-
ing path. Depending on which cost is smaller, the algorithm
will choose to either fill the basin or dig a canal.

3.2. Enforcing topology constraints in segmentation

We integrate the aforementioned algorithm, TopoSimp,
into the image segmentation framework to solve MPTP
(Problem 2). The resulting algorithm we call TopoCut.

First, when the binary or higher order term is zero (η =
0) our algorithm solves MPTP problem by taking µi (Equa-
tion (1)) as the function φ. In such case, the optimal seg-
mentation y∗ = argminy∈Y E(y;µ, 0) labels a pixel i fore-
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ground when µi ≤ 0 and background otherwise. There-
fore the foreground of y∗ is identical to the sublevel set
µ−1(−∞, 0]. The TopoSimp algorithm computes the clos-
est L∞ perturbation of µ so that the sublevel set satisfies
TP, and thus solves the MPTP problem.

In the case when η 6= 0, we adapt our algorithm to
heuristically solve the problem, even though we have no op-
timality guarantee anymore. The intuition is as follows. We
start with an original optimal segmentation y∗ and we try to
eliminate its components and holes when their numbers are
above β0 and β1. To do so, we adjust the unary potential us-
ing robustness. Next, we apply graph cuts to the new unary
potential and the original binary potential. This process is
repeated until a segmentation with the correct topology is
found.

At each iteration, to elimerate extra topology features,
we measure their “robustness” according to the landscape
of the unary function µ. Specifically, we construct a new
function, φ, whose sublevel set φ−1(−∞, 0] is the same as
the foreground of y∗. Furthermore, within the foreground
region (resp. background region), the landscape of φ is the
same as µ. Let C = max |µi|, we then define φ as follows.

φi :=

{
µi + C if yi = 0,
µi − C if yi = 1.

Next, we apply TopoSimp to the constructed function φ.
The output is a perturbation φ̂ of φ. We use such pertur-
bation to adjust the unary term, namely, µ̂ = µ + φ̂ − φ.
This adjustment enforces regions to be background (in the
removing cases) and paths to be foreground (in the merging
cases).

Next, we use the adjusted µ̂ together with the other
energy contribution to obtain a new segmentation, ŷ∗ =
argminy∈Y E(y; µ̂, η). If ŷ∗ still does not satisfy the topol-
ogy constraint, we use ŷ∗ and µ̂ to construct another φ and
we again apply TopoSimp. We proceed iteratively until the
segmentation result satisfies TP.

Notice that at each iteration, the algorithm would only
adjust φ towards 0. Therefore, the value C = max |µi|
remains constant.

One justification of the TopoCut algorithm is that for
η = 0 it produces the MPTP segmentation, even though
the optimal L∞ norm of the perturbation is increased by C.
Also the critical points associated to each topology feature
remain the same, only the absolute values of their function
values are all increased by C. The suggested path to merge
components, and the suggested components to be removed
all remain the same.

4. Experiments
We evaluate the TopoCut algorithm in experiments on

synthetic and natural images. The synthetic setup with

known ground truth and noise model allows us to analyze
and discuss the properties of MPTP quantitatively. The nat-
ural images illustrate how image segmentation can benefit
from the the integration of topological constraints.

Image Denoising. We follow the setup introduced in [15]
that subsequently was used in [24] to quantitatively evaluate
topologically constrained energy minimization. We com-
pute unary potentials for a 32× 32 pixel grid by disturbing
a pre-defined X-shaped ground truth labeling yGT with in-
dependent Gaussian noise,µi = 1−2yGTi + N (0, σ). Pair-
wise potentials are chosen by connecting each pixel to its
4-neighborhood and sampling submodular Potts potentials
ηii′ = |N (0, k/2)|Jyi 6= yi′K (the factor 1/2 occurs only to
make our parametrization consistent with previous work).

We vary σ ∈ {0, 0.1, . . . , 1} and k ∈ {0, 0.5, 1, . . . , 4}
to obtain random fields with different amounts of signal
noise and smoothness priors, see Figure 3(a) for an ex-
ample image. For each parameter setting we sample 30
random field instances, and we perform random field pre-
diction using different methods. Because we know a pri-
ori that the ground truth is connected and holefree shape,
we use TopoCuts with TP1,0 as topological property. We
compare to the connectivity enforcing approach of [24]
(CMRF) using C++ implementation provided on the au-
thor’s homepage. In addition we include two baselines:
energy minimization using a GraphCut without topologi-
cal constraints (GC), and the heuristic of segmenting with
GraphCut and enforcing foreground connectivity by keep-
ing only the largest connected component of the resulting
foreground region (GC-CC). The approaches [29, 30] are
not applicable in this setup, because they require manual
initialization or user-provided seed points. We measure the
quality of the resulting reconstructions by their Hamming
distance to the known ground truth. Figure 4(a) reports av-
eraged numeric results over the 30 runs.

The experimental setup described above was originally
devised to measure the performance of generic energy min-
imization approaches, and it does not reflect well the situa-
tion how computer vision application today typically make
use random fields. In particular, the choice of random val-
ues for the pairwise potential terms, and the assumption
of uncorrelated noise in the unary potentials are unrealis-
tic. Consequently we also performed experiments using
random fields that better reflect the situation of image seg-
mentation: we choose Potts pairwise potentials with uni-
form weight ηii′ = kJyi = yi′K and sample the unary po-
tentials µ = (µi)i∈V from a correlated noise distribution,
µ = 2yGT−1 + σε where ε ∼ N (0,Στ ) are τ -correlated
Gaussian noise images that we obtain by smoothing inde-
pendent Gaussian noise with a Gaussian of variance τ2 over
the pixel grid. Figures 3(b)–3(d) show example images. We
repeat the experimental setup described above with these
choices. The results are summarized in Figure 4(b).
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(b) 32× 32 letter X denoising with correlated noise (τ ∈ {1, 2, 3, 5} in reading order) and constant pairwise potentials

Figure 4. Quantitative image reconstruction results (best viewed in color). Column 1: Hamming loss of TopoCuts for varying σ (y-axis)
and k (x-axis). Columns 2–4: Error difference to baselines: MRF with connectivity constraints (CMRF) [24], GraphCut (GC), connected
component heuristic (GC-CC). Larger version of the plots can be found in technical report that is available at the author’s homepage.

(a) uncorrelated (b) τ = 1 (c) τ = 3 (d) τ = 5

Figure 3. Visualization of unary potentials with different forms of
Gaussian noise. τ denotes the correlation strength.

Discussion of Results. Figure 4 shows that knowledge
of the target topology, i.e. connectedness and holefreeness
in our example, can indeed improve the image restoration
results. For large regions of the parameter set, TopoCuts
improves reconstruction results over the GC segmentation,
as well as over the GC-CC heuristic (blue and blue-green re-
gions). Only if very strong and uncorrelated noise is added
to the unaries, perturbation based topological prediction
yields worse results than the baseline methods (red regions).
This effect can be understood by the fact that strong uncor-
related noise leads a large number of small (typically single-
pixel) foreground components in the GraphCut segmenta-
tion. If their unary potential is strong enough, TopoCuts
connect these to the main contour, introducing erroneous
additional foreground pixels in the process. CMRF is less
prone to this effect, because its L1 criterion suppresses
small components even of high unary values if they lie far
away from the main contour.

For medium and strongly correlated noise (and this is
common for natural images) our algorithm outperforms the
baselines in terms of reconstruction accuracy, and it is gen-
erally comparable to CMRF or even better. This makes
sense, because correlated noise is less likely to create sin-
gle pixel outliers of very strong unary potential. Instead,
more homogeneous of larger size components occur, and
for these the L∞ criterion is as reliable as the L1 one.

An advantage of TopoCuts is that it always creates binary
segmentations, whereas CMRF’s output can have fractional
entries, because of the underlying LP-relaxation approach.
In our experiments, this happened for 13% of the images,
where on average 2.7% of pixels were fractionally labeled.
In order to obtain a binary reconstruction we treat all nodes
with fractional values as part of the foreground. The alter-
native of rounding to the nearest integer would not ensure
connectivity, and it also resulted in slightly worse recon-
struction accuracy during our experiments.

Object Segmentation. To show the potential of TopoCuts
also for practical segmentation tasks, we applied it to the
GrabCut dataset of natural images, following the procedure
introduced in [3]. For each of the 50 images in the dataset,
we use the provided lasso-trimap to compute unary poten-
tials for foreground and background using a color mixture
model. We set the pairwise potentials on an 8-neighborhood
using the contrast sensitive scaling of [3]. With the re-
sulting energy function we perform figure-ground segmen-
tation using GraphCut (GC) and our proposed algorithm
(TopoCuts), using foreground 4-connectivity as topological
property6. The energy function has one free parameter, the
weighting w of unary to pairwise terms. We report results
for choosing w ∈ {0, 0.2, . . . , 1.4} by two selection cri-
teria: setting w globally to the value that leads to lowest
total segmentation error over all image (global), and set-
ting w on a per-image basis to the value that leads to min-
imal total error (per image). The segmentation quality is
measured separately for each image by the total number of
mislabeled pixels divided by the number of pixels in the un-
certainty region as specified by the tripmap. Table 4 reports
the results in form of mean and standard error of the mean

6All object in the GraphCut dataset are connected, but some exhibit
holes. Therefore we do not also enforce holefreeness.
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method err (global w) [%] err (per-image w) [%]
TopoCuts 7.0± 0.7 6.1± 0.6

GC 7.5± 0.7 6.5± 0.6
Table 1. Segmentation accuracy on GrabCut image dataset.

over the 50 images. It shows that including topological in-
formation improves the averaged segmentation scores, but
only slightly so. This is not surprising, given that for many
of GrabCut images the GraphCut segmentation is already
connected, and both methods yield the same result in these
cases.

The advantage of topological side information becomes
apparent when looking at those examples where the GC
segmentation does not have the correct topology, such that
TopoCuts modified the solution.

Figure 5 shows illustrative examples, in particular
demonstrating how the smoothness prior from pairwise po-
tentials and topological constraints complement each other.
If w is chosen too small (w = 0 in the figure), the GC seg-
mentation creates many small components. TopoCuts dis-
cards some of these, but it also connects many of them to
the foreground region by at least a foreground path of sin-
gle pixel width. With increasing weights for the pairwise
terms, most noise components are discarded by the Graph-
Cut. However, significant parts of the image remain un-
connected. TopoCuts enforces paths between these, and be-
cause of the contrast sensitive edge weights, the paths are
become larger image segments during the subsequent en-
ergy minimization. With too highly weighted, the pairwise
terms (e.g. Figure 5, top left with w = 0.8), also suppress
relevant components during the GraphCut. Based on the
MPTP objective, TopoCuts is not able to recover these.

Runtime. For the 32× 32 images TopoCuts requires only
fractions of a second for the topological segmentation, and
the total runtime is in the range of one second, mainly due to
data input and output. For larger images, the iterative calls
to the GraphCut dominate the overall runtime algorithm:
if the original GraphCut is already of the correct topology,
TopoCuts terminates immediately. Otherwise, typically less
5 iterations are necessary and TopoCuts runs at not less then
20% the speed of an unconstrained GraphCut.

In contrast, CMRF is computationally very demanding,
and it does not scale beyond very small images size. Unless
the initial GraphCut segmentation was already connected
(in which case it converges almost immediately), CMRF re-
quired on average 131 seconds to process one 32 × 32 im-
ages. In the most difficult cases (strong noise, no pairwise
potentials), segmenting a single image sometimes took over
three hours of CPU time.

5. Extensions and Outlook
In this work we chose to explain perturbation-based

topological prediction using binary image segmentations

only and with an energy free of higher order terms. How-
ever, we are very positive that the concepts described will
carry over to more general situations. In multi-label seg-
mentation, we can compute and influence topological prop-
erties of each label region. Higher order potentials can
be integrated into the iterative segmentation algorithm the
same way as we do it for the pairwise terms: we ignore
them during TopoSimp, but include them during the actual
energy minimization steps. Topological properties make
particular sense for images of higher dimension, such as
three-dimensional medical image volumes where anatom-
ical knowledge provides topological side information. The
mathematical tool to handle this situation are already avail-
able. However, the TopoSimp would need to be extended
to handle the richer topology of R3. Finally, the proof of
Theorem 1 shows us that the minimal perturbation topolog-
ical prediction does not have to be restricted to topological
properties, but could be extended also for other problems
of energy minimization with additional constraints. It is an
interesting open question which other image properties in
general lend themselves to the minimal perturbation idea.

Acknowledgments

The first author is supported by the Austrian Science Fund
(FWF) grant No. P20134-N13. The authors would like to
thank Sebastian Nowozin for helpful discussions.

References
[1] D. Attali, M. Glisse, S. Hornus, F. Lazarus, and D. Morozov.

Persistence-sensitive simplification of functions on surfaces
in linear time. In Workshop on Topology-based Methods in
Data Analysis and Visualization, 2009.

[2] P. Bendich, H. Edelsbrunner, D. Morozov, and A. Patel. The
robustness of level sets. In European Symposium on Algo-
rithms, 2010.

[3] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Inter-
active image segmentation using an adaptive gmmrf model.
In ECCV, 2004.

[4] Y. Boykov and G. Funka-Lea. Graph cuts and efficient nd
image segmentation. IJCV, 70(2):109–131, 2006.

[5] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimizaton in
vision. PAMI, 26(9):1124–1137, 2004.

[6] C. Chen and D. Freedman. Topology Noise Removal for
Curve and Surface Evolution. Medical Computer Vision.
Recognition Techniques and Applications in Medical Imag-
ing, pages 31–42, 2011.

[7] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-
sensitive simplification functions on 2-manifolds. In ACM
Symposium on Computational Geometry, 2006.

[8] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact max-
imum a posteriori estimation for binary images. Journal of
the Royal Statistical Society (B), 51(2):271–279, 1989.

2095



Figure 5. Example segmentations from of GrabCut dataset. Each group shows (in reading order): original image, GraphCut segmentation
with w ∈ {0, 0.4, 0.8}, trimap, TopoCuts segmentation with w as above and TP = ”fg(y) is connected”.

[9] X. Han, C. Xu, and J. Prince. A topology preserving level set
method for geometric deformable models. PAMI, 25(6):755–
768, 2003.

[10] V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helm-
staedter, K. Briggman, W. Denk, J. Bowden, J. Mendenhall,
W. Abraham, et al. Boundary learning by optimization with
topological constraints. In CVPR, 2010.

[11] S. Jegelka and J. Bilmes. Submodularity beyond submodular
energies: coupling edges in graph cuts. In CVPR, 2011.

[12] T. H. Kim, K. M. Lee, and S. U. Lee. Nonparametric higher-
order learning for interactive segmentation. In CVPR, 2010.

[13] R. Kindermann and J. L. Snell. Markov random fields and
their applications. American Mathematical Society, Provi-
dence, RI, 1980.
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